首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
admin
2015-12-03
30
问题
设f(x
1
,x
2
,x
3
)=x
2
Ax=x
1
2
+ax
2
2
+x
3
2
+4x
1
x
2
+4x
1
x
3
+2bx
2
x
3
,ξ=(1,1,1)
T
是A的特征向量,求正交变换化二次型为标准形,并求当x满足x
2
x=x
1
2
+x
2
2
+x
3
2
=1时,f(x
1
,x
2
,x
3
)的最大值。
选项
答案
由已知可得二次型矩阵为[*],设ξ=(1,1,1)
T
所对应的特征值为λ,则由特征值与特征向量的定义有[*],解得a=1,b=2,λ=5。故 [*] 得矩阵A的特征值为λ
1
=5,λ
2
=λ
3
=一1,对应的特征向量分别为 ξ
1
=(1,1,1)
T
,ξ
2
=(0,一1,1)
T
,ξ
3
=(一2,1,1)
T
,单位化之后构造正交矩阵,得 [*] 令x=Qy,则f(x
1
,x
2
,x
3
)=x
T
Ax=5y
1
2
—y
2
2
—y
3
2
。 因为x
T
x=(Qy)
T
Qy=y
T
(Q
T
Q)y=y
T
y=y
1
2
—y
2
2
—y
3
2
=1,所以f(x
1
,x
2
,x
3
)=5y
1
2
—y
2
2
—y
3
2
=6y
1
2
一1,注意到y
1
2
=1一(y
2
2
+y
3
2
)≤1,故f(x
1
,x
2
,x
3
)≤5, [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/GSPRFFFM
0
考研数学一
相关试题推荐
求条件概率P{X≤1|Y≤1}.
已知齐次线性方程组=有非零解,且矩阵A=晕正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(χ1,χ2,χ3)T∈R3.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η3=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
设A=(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
一长方形的两边长分别以x与y表示,若x边以0.O1m/s的速度减少,y边以0.02m/s的速度增加,求在x=20m,y=15m时,长方形面积的变化速度及对角线长度的变化速度.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设平面区域求二重积分
计算二重积分.
设f(u)为u的连续函数,并设f(0)=a>0.又设平面区域σ1={(x,y)||x|﹢|y|≤t,t≥0},Ф(t)=f(x2﹢y2dxdy.则Ф(t)在t=0处的右导数Ф’﹢﹢(0)=()
随机试题
X男与Y女均系甲国人,并在甲国内结婚后,又在乙国购置了一批财产和土地。20年后X去世,住所移至乙国的Y根据甲国法律在乙国提起起诉,要求以死者妻子的身份按夫妻共同财产取得X在乙国的遗产的一半和死者的地产四分之一的用益权。乙国法院受理了这个案件。依乙
使君谢罗敷,宁可共载不?谢:
A.心电图运动试验B.核素心肌灌注显像C.动态心电图监测D.心肌酶谱患者发作性心悸伴头晕,为明确诊断,应选用的检查措施是
儿科护理学的任务是
关于基金税收,下列说法正确的是( )。
给你印象最深刻的教育类名人名言是什么?
Z市对全市房地产企业经营状况进行调查,全市共有43.71万平方米的商品房建成后未能出售或出租,空置率为12.33%。其中商品住宅空置量为15.27万平方米,空置率为7.06%;商品营业用房17.02万平方米,空置率为32.34%;办公写字楼6.93万平方米
根据以下资料,回答下列各题。2009年上半年,北京市宣武区完成全社会固定资产投资29.7亿元,比上年同期下降20.4%,降幅比1—5月缩小了1.1个百分点。其中,城镇固定资产投资12.6亿元,同比增长67.5%,占全社会固定资产投资的比重为42.
下列有关核能表述正确的是:
Beforeabigexam,asoundnight’ssleepwilldoyoumoregoodthanporingovertextbooks.That,atleast,isthefolkwisdom.A
最新回复
(
0
)