首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则( )
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则( )
admin
2022-06-09
30
问题
已知二次型f(x
1
,x
2
,x
3
)=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
经可逆线性变换x=Py化为g(y
1
,y
2
,y
3
)=y
1
2
+y
2
2
+2y
2
y
3
,则( )
选项
A、a=0
B、a<0
C、a>1
D、a>0
答案
B
解析
二次型的矩阵分别为A=
,B=
由已知,A与B合同,实对称矩阵A与B合同的充分必要条件是它们有相同的正、负惯性指数,由
|E-B|=(λ-1)(λ
2
-λ-1)=0,
得B的特征值为λ
1
=1,λ
2
=
<0,λ
3
=
由|λE-A|=(λ-a)(λ-3)(λ-1)=0,
得A的特征值为μ
1
=a,μ
2
=3,μ
3
=1,故a<0,B正确
转载请注明原文地址:https://jikaoti.com/ti/GHhRFFFM
0
考研数学二
相关试题推荐
下列关于向量组线性相关性的说法正确的个数为()①若α1,α2……αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1,+knα2+…+knαn=0。②如果α1,α2……αn线性无关,则对任意不全为零的常数k1,k2,…,kn,都
设{an},{bn},{cn}均为非负数列,且,则必有()
设A,B为n阶可逆矩阵,则().
设n维列向量组(Ⅰ):α1,…,αm(m<n)线性无关,则n维列向量组(Ⅱ):β1…,βm线性无关的充分必要条件为【】
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
设,则当x→0时,两个无穷小的关系是().
设u=f(χ+y,χz)有二阶连续的偏导数,则=().
若f’’(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
二次型xTAx正定的充要条件是
设f(x,y)连续,且,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于
随机试题
男性,18岁,诊断为风湿性心脏病主动脉关闭不全,下列哪项不是周围血管征
基牙倾斜时取得共同就位道的方法错误的是
患者女,28岁,妊娠产物已完全排出,阴道出血逐渐停止,腹痛逐渐消失。妇科检查:子宫接近未孕大小或略大,宫颈口已关闭,需采取的措施是()
某酒店为了10月8日的开业庆典,于10月7日向电视台租借一台摄像机。庆典之日,工作人员不慎摔坏摄像机,酒店决定按原价买下,以抵偿电视台的损失,遂于10月9日通过电话向电视台负责人表明此意,对方表示同意。10月15日,酒店依约定向电视台支付了价款。摄像机所有
【2013专业知识真题下午卷】有线电视系统中,对系统载噪比(C/N)的设计值要求,下列的表述中哪一项是正确的?()
()不属于城市河湖水系规划的基本内容。
后张法无粘结预应力混凝土梁板施工中,预应力筋的张拉顺序是()。
股东大会是股份有限公司的权力机构,由()组成。
“固定资产清理”项目应根据“固定资产清理”科目的期末借方余额填列,如“固定资产清理”科目期末为贷方余额,以“一”号填列。()
作家李先生从2010年3月1日起在某报刊连载一小说,每期取得报社支付的收入300元,共连载110期(其中3月份30期)。9月份将连载的小说结集出版,取得稿酬48600元。下列各项关于李先生取得上述收入缴纳个人所得税的表述中,正确的是()。(2011年
最新回复
(
0
)