求由曲线y=2-x2,y=x(x≥0)与直线x=0围成的平面图形绕x轴旋转一周所生成的旋转体体积.

admin2016-10-01  14

问题 求由曲线y=2-x2,y=x(x≥0)与直线x=0围成的平面图形绕x轴旋转一周所生成的旋转体体积.

选项

答案就一般情况而言,如果有两条曲线y=f(x),y=g(x)(假设f(x)≥g(x))与x=a,x=bx=π∫ab[f2(x)-g2(x)]dx.具体解法如下: 由平面图形a≤x≤b,0≤y≤y(x)所围成的平面图形绕x轴旋转一周所生成的旋转体体积为Vx=π∫aby2(x)dx 画出平面图形的草图(如图所示),则所求体积为0≤x≤1,0≤y≤2-x2所围成的平面图形绕x轴旋转一周所生成的旋转体体积减去0≤x≤1,0≤y≤x所围成的平面图形绕x轴旋转一周所生成的旋转体体积. 当x≥0时,由[*] V=π∫01[(2-x2)2-x2]dx=π∫01(4-5x2+x4)dx =[*] [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/GADGFFFM
0

随机试题
最新回复(0)