首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二阶常系数线性微分方程 y″+ay′+βy=γe2x 的一个特解为y=e2x+(1+x)ex.求此方程的通解.
设二阶常系数线性微分方程 y″+ay′+βy=γe2x 的一个特解为y=e2x+(1+x)ex.求此方程的通解.
admin
2016-11-03
40
问题
设二阶常系数线性微分方程
y″+ay′+βy=γe
2x
的一个特解为y=e
2x
+(1+x)e
x
.求此方程的通解.
选项
答案
由所给方程的非齐次项为γe
2x
及特解中含有e
2x
项知,y
*
=e
2x
是原方程的一个特解.于是y=(1+x)e
x
应是对应齐次方程的特解,因而1为特征方程的二重特征根.于是2为特征方程的一特征根,特征方程为 r
2
一2r+1=0, 则齐次方程应是 y″一2y′+y=0, 故 α=-2, β=1. 又y
*
为非齐次方程的特解,代入其中得 4e
2x
一2.2e
2x
+e
2x
=γe
2x
, 故 γ=1. 因y
1
=e
x
,y
2
=xe
x
都是y″一2y′+y=0的解,且 [*] 故其线性无关,所以Y=(c
1
+c
2
x)e
x
为y″一2y′+y=0的通解.又y
*
=e
2x
是非齐次方程的一个特解,故y=(c
1
+c
2
x)e
x
一e
2x
是非齐次方程的通解.
解析
先根据题设确定微分方程,再求通解.
转载请注明原文地址:https://jikaoti.com/ti/FxwRFFFM
0
考研数学一
相关试题推荐
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
A是n阶矩阵,且A3=0,则().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
设ABCDA为一矩形回路,其中A=A(-1,1),B=B(-1,-1),C=C(ξ,-1),D=D(ξ,1),求。
(13年)设L1:x2+y2=1,L2:x2+y2=2,L3:x2+2y2=2,L1:2x2+y2=2为四条逆时针方向的平面曲线.记(i=1,2,3,4),则max{I1,I2,I3,I4}=
边长为a和b的矩形薄板与液面成α角斜沉于液体内,长边平行于液面位于深h处,设a>b,液体的比重为y,求薄板受的液体压力.
随机试题
患者,女,38岁。腰部冷痛重着,天气变化或阴雨风冷时加重。治疗除取主穴外,还应选用
施工图预算、招标标底由()组成。
成卷的半透明纸,宽30厘米
企业财务报告的使用者主要包括()。
塑造良好企业形象,属于平衡计分卡的()。
联合国《儿童权利公约》规定,对儿童的养育与发展负有首要责任的是()。
10Gbps的Ethernet局域网中的传输介质是()。
下列叙述中正确的是
Scottishfood文中女的提到“I’dliketotrysomeofthatScottishfood”,由此可得正确答案。
A、Yes,I’dloveto.B、I’mafraidnot.C、Pleasedoitforme.A
最新回复
(
0
)