首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年]设有齐次线性方程组 n≥2,试问a取何值时,该方程组有非零解?并求出其通解.
[2004年]设有齐次线性方程组 n≥2,试问a取何值时,该方程组有非零解?并求出其通解.
admin
2019-04-08
24
问题
[2004年]设有齐次线性方程组
n≥2,试问a取何值时,该方程组有非零解?并求出其通解.
选项
答案
利用初等行变换求之. [*] (1)当a=0时,秩(A
1
)=秩(A)=1,方程组有非零解,由 A
2
=[*] 即知其基础解系含n一1个解向量α
1
,α
2
,…,α
n-1
,且 α
1
=[一1,1,0,…,0]
T
,α
2
=[一1,0,1,…,0]
T
,…,α
n-1
=[一1,0,…,0,1]
T
. 方程组的通解为 x=k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
, ① 其中k
1
,k
2
,…,k
n-1
为任意常数. (2)当a≠0时,对A
1
作初等行变换化成含最高阶单位矩阵的矩阵: [*] 当a+n(n+1)/2=0即a=一n(n+1)/2时,秩(A)=n一1<n,方程组有非零解,其基础解系只含一个解向量β=[1,2,3,…,n]
T
,原方程的通解为 x=kβ, 其中k为任意常数. ②
解析
转载请注明原文地址:https://jikaoti.com/ti/FioRFFFM
0
考研数学一
相关试题推荐
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B。
设线性方程组与方程x1+2x2+x3=a-1有公共解,求a的值及所有公共解。
已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A2x=3Ax-2A2x。(Ⅰ)记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP-1;(Ⅱ)计算行列式|A+E|。
已知方程组无解,则a=______。
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
已知齐次线性方程组同解,求a,b,c的值.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
随机试题
如何定义原材料转化过程中的环境问题?
A、Disconnecthistelephone.B、Blowawhistleintothereceiver.C、Keeparecordofincomingannoyancecalls.D、Reporthisproble
女,62岁。反复咳嗽、喘息15年,1个月前搬入新居后再发加重。口服茶碱类药物有所缓解。查体:双肺呼吸音低,呼气相延长。胸部X线片未见明显异常,肺功能检查示FEV1/FVC=56%,舒张试验示FEV1改善率12%。该患者应首选考虑的诊断是
在计算机硬件技术指标中,度量存储器空间大小的基本单位是()。
我嗣刑法规定的刑种,下列属于主刑的是()
一个同事向你打听案情,向你借案卷,但这个案子是保密性质的。你将怎么办?
试论述蔡元培五育并举思想。
Inthepast,theParkServicefocusedonmakingthebigscenicparksmore【21】______andcomfortablefortourists.Roadswere
We’veallheardaboutendangeredanimals.Creatureslikethecriticallyendangeredblackrhinocerosarefamous.Butwhatarethe
NextMondayisWorldHealthDay,【S1】______bytheWorldHealthorganization.Theobjectivechosenforthisyearistogetpeople【
最新回复
(
0
)