首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a、b、c为三个不共线的平面向量,证明:它们首尾相接恰好构成一个三角形的充分必要条件是: a×b=b×c—c×a.
设a、b、c为三个不共线的平面向量,证明:它们首尾相接恰好构成一个三角形的充分必要条件是: a×b=b×c—c×a.
admin
2017-11-13
33
问题
设a、b、c为三个不共线的平面向量,证明:它们首尾相接恰好构成一个三角形的充分必要条件是: a×b=b×c—c×a.
选项
答案
向量a,b,c首尾相接恰好构成一个三角形的充分必要条件是a+b+c=0.因此,只要证明a+b+c=0<=>a×b=b×c=c×a. 必要性:因为a+b+c=0,两边分别用用向量b,c作叉积,得 [*] 则 a×b=b×c—c×a. 充分性:因为a×b=b×c=c×a,根据a×=b×c,得(a+c)×b=0,故(a+b+c)×b=0.所以,向量b与a+b+c平行. 类似地,根据a×b= c×a,b×c=c×a,亦可得到向量a与a+b+c平行,向量c与a+b+c平行. 又因为向量a、b、c为三个不共线的平面向量,所以a+b+c=0.
解析
本题主要考查向量加法的三角形法则、向量运算的概念及其运算律.
转载请注明原文地址:https://jikaoti.com/ti/EWVRFFFM
0
考研数学一
相关试题推荐
当x→0+时,下列无穷小中,阶数最高的是().
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
s1={1,一1,2),s2={一1,2,1),n=s1×s2={一5,一3,1),所求平面方程为π:一5(x一2)一3(y+2)+(z一3)=0,即π:一5x一3y+z+1=0.
设f(x,y)是{(x,y)|x2+y2≤1)上的二阶连续可微函数,满足,计算积分
反常积分
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
讨论f(x)的连续性.
试讨论函数g(x)=在点x=0处的连续性.
随机试题
下列对甲状腺描述不准确的是【】
GB15979---2002《一次性使用卫生用品卫生标准》中规定,生产环境中空气采样应该在下列何种状态下进行
皮肤由哪个胚层分化而来消化系统由哪个胚层分化而来
男性,56岁,发现高血压10年,1周来工作繁忙,出现头晕、头胀、胸闷,昨晚气促、心慌。以往无心力衰竭史。血压186/112mmHg,心率118次/min,律齐,双肺呼吸音粗,下肢无水肿。该例患者心功能进入失代偿期最主要的原因是
关于麻黄,指出下列错误的是
分部分项工程量清单中的合价等于工程数量和()的乘积。
简述注册税务师代理服务业营业税纳税申报的操作要点。
属于商业银行为了达到营销目的而采取的营销策略有()。
设三阶矩阵A,B满足关系A-1BA=6A+BA,且A=,则B=______.
A、Anindustrialtown.B、Agreenforest.C、Aremotevillage.D、Alesspollutedcity.D
最新回复
(
0
)