设z=z(u,v)具有二阶连续偏导数,且z=z(x一2y,x+3y)满足求z=z(u,v)的一般表达式.

admin2018-11-11  50

问题 设z=z(u,v)具有二阶连续偏导数,且z=z(x一2y,x+3y)满足求z=z(u,v)的一般表达式.

选项

答案以z=z(u,v),u=x一2y,v=x+3y代入式①,得到z(u,v)应满足的微分方程,也许这个方程能用常微分方程的办法解之. [*] 代入式①,化为 [*] 它可以看成一个常微分方程(其中视v为常数),解得[*] 其中ψ(v)为具有连续导数的v的任意函数.再由 [*] 其中φ(u)为具有连续导数的u的任意函数,φ(v)为具有二阶连续导数的v的任意函数,其中u=x一2y,v=x+3y.

解析
转载请注明原文地址:https://jikaoti.com/ti/EGWRFFFM
0

最新回复(0)