首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_____________.
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_____________.
admin
2019-11-25
34
问题
设A为三阶实对称矩阵,a
1
=(a,-a,1)
T
是方程组AX=0的解,a
2
=(a,1,1-a)
T
是方程组(A+E)X=0的解,则a=_____________.
选项
答案
1
解析
因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,
因为AX=0及(A+E)X=0有非零解,所以λ
1
=0,λ
2
=-1为矩阵A的特征值,
a
1
=(a,-a,1)
T
,a
2
(a,1,1-a)
T
是它们对应的特征向量,所以有a
T
1
a
2
=a
2
-a+1-a=0,解得a=1.
转载请注明原文地址:https://jikaoti.com/ti/DkiRFFFM
0
考研数学三
相关试题推荐
设需求函数为其中Q为需求量,p为价格,a,b>0为待定常数,总成本函数为一7Q2+100Q+50,已知当边际收益MR=67,且需求价格弹性Ep=时,总利润最大.求总利润最大时的产量,并确定a,b的值.
设三阶方阵A满足Aα1=0,Aα2=2α1+α2,Aα3=-α1+3α2-α3,其中α1=[1,1,0]T,α2=[0,1,1]T,α3=[-1,0,1]T.(1)求A;(2)求对角矩阵A,使得A~A.
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T(1)求方程组(I)的基础解系;(2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是()
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述:①若f(x)>g(x),则f’(x)>g’(x);②若f’(x)>g’(x),则f(x)>g(x),则()
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设f(x)=求曲线y=f(x)与直线所围成的平面图形绕x轴旋转所成旋转体的体积.
若在区间(0,1)上随机地取两个数u,v,则关于x的一元二次方程x2—2vx+u=0有实根的概率是________.
求下列幂级数的收敛域及其和函数:
随机试题
()是无上层装置的托盘。
HIV-1具有的酶活性有
A.显于风关B.达于气关C.达于命关D.透关射甲E.未超风关邪入脏腑,病情严重者,指纹的表现是()
某患者被人搀扶着步入医院,接诊护士看见其面色发绀,口唇呈黑紫色,呼吸困难,询问病史得知其有慢性阻塞性肺病史。护士采取相应措施时应特别注意
简述副食中高和低脂肪食物。
简述“中国音乐体系”的音乐特征。
各区(县)人民政府,市各局委办,市各直属机关:近年来,应广大群众的要求,我市逐步放开了烟花爆竹销售市场,但烟花爆竹销售还存在着管理不规范、监督不到位、销售不合法的现象,不仅影响了市场秩序,而且带来了一定的安全隐患。鉴于此,为规范我市烟花爆竹销售市
设z=,其中f(u)具有二阶连续导数,f(0)=f’(0)=0,且=z+,求f(u)。
通过“任务管理器”查看当前电脑的联网状态。
Nooneknowsexactlyhowmanydisabledpeoplethereareintheworld,butestimatessuggestthefigureisover450million.The
最新回复
(
0
)