首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶方阵A满足Aα1=0,Aα2=2α1+α2,Aα3=-α1+3α2-α3,其中α1=[1,1,0]T,α2=[0,1,1]T,α3=[-1,0,1]T. (1)求A; (2)求对角矩阵A,使得A~A.
设三阶方阵A满足Aα1=0,Aα2=2α1+α2,Aα3=-α1+3α2-α3,其中α1=[1,1,0]T,α2=[0,1,1]T,α3=[-1,0,1]T. (1)求A; (2)求对角矩阵A,使得A~A.
admin
2018-09-20
26
问题
设三阶方阵A满足Aα
1
=0,Aα
2
=2α
1
+α
2
,Aα
3
=-α
1
+3α
2
-α
3
,其中α
1
=[1,1,0]
T
,α
2
=[0,1,1]
T
,α
3
=[-1,0,1]
T
.
(1)求A;
(2)求对角矩阵A,使得A~A.
选项
答案
(1)合并α
1
,α
2
,α
3
成矩阵,并由题设条件得 A[α
1
,α
2
,α
3
]=[0,2α
1
+α
2
,一α
1
+3α
2
一α
3
] =[α
1
,α
2
,α
3
][*] 由|α
1
,α
2
,α
3
|=[*]=2≠0,知[α
1
,α
2
,α
3
]可逆,且 [*] (2)由(1)知 A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
][*] 故[α
1
,α
2
,α
3
]
-1
A[α
1
,α
2
,α
3
]=[*] 又|λE一B|=[*]=λ(λ一1)(λ+1),故B有三个不同的特征值λ
1
=0,λ
2
=1,λ
3
=一1.故B~Λ=[*].由相似矩阵的传递性,得A~B~Λ,即A~Λ=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/CdIRFFFM
0
考研数学三
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),Ax=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设随机变量X和Y相互独立,且分布函数为FX(x)=FY(y)=令U=X+Y,则U的分布函数为________.
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止,设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(Ф(1)=0.8413,Ф(2)=0.9
设A从原点出发,以固定速度υ0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度υ1朝A追去,求B的轨迹方程.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在。则有()
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
随机试题
分析《逍遥游》一文的论述思路。
按照销售工作数量来确定销售人员的数量的是()
“您感到生活幸福吗?”这种提问不符合问卷设计的哪个原则
奶牛产后65天内未见明显的发情表现,直肠检查卵巢上有一小的黄体遗迹,但无卵泡发育,卵巢的质地和形状无明显变化。治疗该病最适宜药物是
在合同工程履行期间,下列()事项可以归人现场签证的范围。
“合格境外机构投资者(QFII)的审批及监管,境外资产管理机构在华设立代表处的审批”属于中国证监会内设( )的职责。
1684年,清政府设置台湾府,隶属于()。
Writeanessayof160-200wordsbasedonthefollowingdrawing.Inyouressay,youshould1.describethepicturebrieflytosho
Whereistheconversationmostlikelytakingplace?
Whenaconsumerfindsthatanitemsheorheboughtisfaultyordoesnotliveuptothemanufacturer’sclaimforit,thefirst
最新回复
(
0
)