首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
admin
2021-01-25
43
问题
(88年)已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关.设β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.试讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
假设有一组数χ
1
,χ
2
,…,χ
s
,使得 χ
1
β
1
+χ
2
β
2
+…+χ
s
β
s
=0 将题设的线性表示式代入上式并整理,得 (χ
s
+χ
1
)α
1
+(χ
1
+χ
2
)α
2
+…+(χ
s-1
+χ
s
)α
s
=0 由于α
1
,α
2
,…,α
s
线性无关,故有 [*] 此方程组的系数行列式为s阶行列式: [*] 因此有 (1)若s为奇数,则D=2≠0,故方程组(*)只有零解,即χ
1
,χ
2
,…,χ
s
必全为0.这时,β
1
,β
2
,…,β
s
线性无关; (2)若s为偶数,则D=0,故方程组(*)有非零解,即存在不全为0的一组数χ
1
,χ
2
,…,χ
s
,使χ
1
β
1
+χ
2
β
2
+…+χ
s
β
s
=0.这时,向量组β
1
,β
2
…,β
s
线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/DhaRFFFM
0
考研数学三
相关试题推荐
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;③若AX=0与BX=0同解,则秩(A
设函数f(x)在[a,b]上有三阶连续导数。(Ⅰ)写出f(x)在[a,b]上带拉格朗日余项的二阶泰勒公式;(Ⅱ)证明存在一点η∈(a,b),使得
假设随机变量X1,X2,X3,X4相互独立,且同分布,P(Xi=0)=0.6,P(Xi=1)=0.4(i=1,2,3,4).求行列式的概率分布.
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
求函数f(x,y)=xy(a一x—y)的极值.
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q.
(14年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
已知齐次线性方程组有通解k1(2,-1,0,1)T+k2(3,2,1,0)T,则方程组的通解是_____
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
随机试题
椎体叙述错误的是
判定下列级数的敛散性,若收敛,请指出是条件收敛还是绝对收敛:
车削同轴度要求较高的套类工件时,可采用()。
商品买卖与货款支付分离时,货币发挥的职能是()
昏睡的特点是()
18岁男性患者,双下肢水肿伴尿少8天,血压150/105mmHg,尿红细胞(+++),尿蛋白(+++),血肌酐210μmol/L,下列何种疾病的可能性最小
善治厥阴头痛的药物是
汽轮机的进汽焓值为3432.97kJ/kg,排气焓值为2437.14kJ/kg,1kg再热蒸汽带给汽轮机的热量为500.03kJ/kg,高压缸第I级抽气的焓值为3139.26kJ/kg,则第I级抽气的做功不足系数Y1为()。
担任基金托管人应当具备的条件不包括()。
Agreenandyellowparrot,whichhunginacageoutsidethedoor,keptrepeatingoverandover:"Allezvous-en!Allezvous-
最新回复
(
0
)