已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为 求矩阵A;

admin2016-01-11  47

问题 已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为

求矩阵A;

选项

答案由题设知A的特征值为1,1,0. 且α=(1,0,1)T是属于A的特征值0对应的一个特征向量.设x=(x1,x2,x3)T为A的属于特征值1的特征向量,由于A的不同的特征值所对应的特征向量正交,所以有(x,α)=0,即x1+x3=0,解该方程组的基础解系ξ1=(1,0,一1)T,ξ2=(0,1,0)T,将其单位化,并将其取为A的属于特征值1对应的正交单位的特征向量, [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/D9DRFFFM
0

最新回复(0)