设f(x,y)在全平面有连续偏导数,曲线积分∫L(x,y)dx+xcosydy在全平面与路径无关,且∫(0,0)(t,t2)dx+xcosydy=t2,求f(x,y).

admin2019-01-25  27

问题 设f(x,y)在全平面有连续偏导数,曲线积分∫L(x,y)dx+xcosydy在全平面与路径无关,且∫(0,0)(t,t2)dx+xcosydy=t2,求f(x,y).

选项

答案Lf(x,y)dx+xcosydy在全平面与路径无关<=> [*] 积分得 f(x,y)=siny+C(x). 求f(x,y)转化为求C(x). f(x,y)dx+xcosydy=sinydx+xcosydy+C(x)dx =sinydx+xdsiny+d[∫0xC(s)ds]=d[xsiny+∫0xC(s)ds] => [xsiny+∫0xC(s)ds]|(0,0)(t,t2)=t2, 即tsint2+∫0lC(s)ds=t2 <=> sint2+2t2cost2+C(t)=2t. 因此 f(x,y)=siny+2x—sinx2一2x2cos2

解析
转载请注明原文地址:https://jikaoti.com/ti/D41RFFFM
0

最新回复(0)