首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
admin
2018-12-27
32
问题
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
选项
答案
y=-xe
x
+x+2=x(1-e
x
)+2
解析
由齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
可知λ=1是特征方程λ
2
+aλ+b=0的重根,从而可得a=-2,b=1。则原齐次微分方程为y"-2y’+y=x。
设特解y
*
=Ax+B,则(y
*
)’=A,(y
*
)"=0。分别将其代入原微分方程,有-2A+Ax+B=x,比较x的系数知,A=1。于是有-2+B=0,即B=2。所以特解y
*
=x+2。
故非齐次微分方程的通解y=(C
1
+C
2
x)e
x
+x+2,将y(0)=2,y’(0)=0代入,得C
1
=0,C
2
=-1。
因此满足条件的解y=-xe
x
+x+2=x(1-e
x
)+2。
转载请注明原文地址:https://jikaoti.com/ti/Cq1RFFFM
0
考研数学一
相关试题推荐
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型·
设f(x,y)=xy,则=_____
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3;Aα3=2α2+3α3.(1)求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;(2)求A的特征值;(3)求一个可逆矩阵P,使得P
设向量组α1,…,αr线性无关,又β1=a11α1+a21α2+…+ar1αrβ2=a12α1+a22α2+…+ar2αrβr=a1rα1+a2rα2+…+arrαr记矩阵A=(aij)r×r,证明:β1,β2,…,βr线性无关的充分必要条件是A的
设α为实n维非零列向量,αT表示α的转置.(1)证明:为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
(10年)设二维随机变量(X,Y)的概率密度为一∞<x<+∞,一∞<y<+∞,求常数A及条件概率密度fY|X(y|x).
一条鲨鱼在发现血腥味时,总是向着血腥味最浓的方向追寻.在海面上进行试验表明:如果把坐标原点取在血源处,在海面上建立直角坐标系,那么点(x,y)处血液的浓度c(每百万份水中所含血的份数)可以近似地表示为求鲨鱼从点(x0,y0)出发向血液前进的路线.
求的收敛域及和函数.
设求f[g(x)]
设z=esinxy,则dz=________
随机试题
下列不属于核心能力企业外扩张战略的是()
Whydowelaugh?Foryearsscientistshaveaskedthemselvesthisquestion.Nootheranimalslaughandsmile,onlyhumanbeings.
小儿虽然处于不断生长发育中,但却呈现其固有的规律,即发育的不平衡性、渐进性和个体性。生长发育的一般规律,正确的是
大黄的主治病证是()巴豆的主治病证是()
关于有限责任公司的股东人数的规定,下列正确的是()。
低热量食物是指含淀粉、糖类等碳水化合物类较少的食物。通过食用、低热量食品,可以有效控制能量的摄入量,避免多余能量在体内以脂肪形式储存下来。如果体重已经较重的人改为食用低热量食品,则可在保持饱腹感的同时达到减肥效果。另外,有许多人认为,低热量食物对糖尿病患者
下列关于局域网设备的描述中,错误的是()。
在数据流图中,○(椭圆)代表( )。
このしなものがほしい人はここに自分のなまえと住所を書きなさい。しなもの
Womenaresometimes(fair)______paideventhoughtheydothesamejobasmen.
最新回复
(
0
)