首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求xn.
[2018年] 设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求xn.
admin
2019-04-08
78
问题
[2018年] 设数列{x
n
}满足:x
1
>0,x
n
e
x
n+1
=e
x
n
一1(n=1,2,…).证明{x
n
}收敛,并求
x
n
.
选项
答案
设f(x)=e
x
一1一x,x>0,则有 f’(x)=e
x
一1>0,f(x)>f(0)=0,[*]>1, 从而e
x
2
=[*]>1,x
2
>0. 猜想x
n
>0,现用数学归纳法证明:n=1时,x
1
>0,成立. 假设n=k(k=1,2,…)时,有x
k
>0,则n=k+1时有 e
x
k+1
=[*]>1,x
k+1
>0. 因此x
n
>0,有下界.再证单调性. x
n+1
-x
n
=[*]. 设g(x)=e
x
一1一xe
x
,x>0时,g’(x)=e
x
一e
x
一xe
x
=一xe
x
<0,所以g(x)单调递减,g(x)<g(0)=0,即有e
x
一1<xe
x
,因此 x
n+1
一x
n
=[*] 即数列{x
n
}单调递减.故由单调有界准则可知极限[*]x
n
存在. 不妨设[*]x
n
=A,则Ae
A
=e
A
一1. 因为g(x)=e
x
一1-xe
x
只有唯一的零点x=0,所以A=0,即 [*]x
n
=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/CnoRFFFM
0
考研数学一
相关试题推荐
(2016年)设函数f(u,v)可微,z=z(x,y)由方程(x+1)z—y2=x2f(x—z,y)确定,则dz|(0,1)=______________。
(2003年)已知函数f(x,y)在点(0,0)的某个邻域内连续,且则()
设矩阵()
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。试证这三条直线交于一点的充分必要条件为a+b+c=0。
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求:(Ⅰ)乙箱中次品件数X的数学期望;(Ⅱ)从乙箱中任取一件产品是次品的概率。
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成a的平面截此柱体,得一楔形体(如图1.3—2),求此楔形体的体积V.
计算I=∮L,其中L是绕原点旋转一周的正向光滑闭曲线.
求下列极限
(2003年)过坐标原点作曲线y=Inx的切线,该切线与曲线.y=lnx及x轴围成平面图形D.求D绕直线x=e旋转一周所得旋转体的体积V.
(2018年)设函数f(x)具有2阶连续导数.若曲线y=f(x)过点(0,0)且与曲线y=2x在点(1,2)处相切,则
随机试题
患儿,女,3岁。因败血症入院治疗。出现寒战,发绀,四肢皮肤湿冷,精神萎靡等感染性休克症状。应最先实施的急救是
下列心动过速哪项是绝对不规则的
影响骨的灵活性和稳定性的因素不包括
甲氨蝶呤属于
某进口设备,其银行财务费为4.25万元,外贸手续费为18.9万元,关税税率为20%,增值税税率为17%,抵岸价为1792.19万元,此设备无消费税,则此设备到岸价为()万元。
现阶段我国社区教育的内容有很多,其中对居民进行居室布置、家庭关系及家庭沟通,生活理财等与家庭生活有关的教育属于()教育。
为降低乘客的眩晕感,“高速列车”的车里安装了减速玻璃。下列关于减速玻璃和普通玻璃的表述正确的是()。
阅读下面的文章,回答问题。为什么欧美人和亚洲人拥有不同的思维方式?为什么前者倾向于个人主义,并且惯于以分析的方式推理,而后者绝大多数呈现出一种集体主义,并且习惯从整体角度思维?这是个宏大的问题,人们曾从宗教信仰、生活方式,甚至
|A|是阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
MoststudentshavesomefamiliaritywiththestoriesofFrankensteinandAChristmasCarol.However,eventhemostconfident15-
最新回复
(
0
)