设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.

admin2016-10-23  36

问题 设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α13+6α5,求方程组AX=0的通解.

选项

答案因为α1,α3,α5线性无关,又α2,α4可由α1,α3,α5线性表示,所以r(A)=3,齐次线性方程组AX=0的基础解系含有两个线性无关的解向量.

解析
转载请注明原文地址:https://jikaoti.com/ti/w7xRFFFM
0

相关试题推荐
最新回复(0)