首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (1)求a的值; (2)求正交变换χ=Qy,把f(χ1,χ2,χ3)化为标准形; (3)求方程f(χ1,χ2,χ3)=0
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (1)求a的值; (2)求正交变换χ=Qy,把f(χ1,χ2,χ3)化为标准形; (3)求方程f(χ1,χ2,χ3)=0
admin
2017-08-28
35
问题
已知二次型f(χ
1
,χ
2
,χ
3
)=(1-a)χ
1
2
+(1-a)χ
2
2
+2χ
3
2
+2(1+a)χ
1
χ
2
的秩为2.
(1)求a的值;
(2)求正交变换χ=Qy,把f(χ
1
,χ
2
,χ
3
)化为标准形;
(3)求方程f(χ
1
,χ
2
,χ
3
)=0的解.
选项
答案
(1)二次型矩阵A=[*]二次型的秩为2,则二次型矩阵A的秩也为2,从而 [*] 因此a=0. (2)由(1)中结论a=0。则A=[*],由特征多项式 |λE-A|=[*]=(λ-2)[(λ-1)
2
-1]=λ(λ-2)
2
, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0. 当λ=2,由(2E-A)χ=0,系数矩阵[*],得特征向量α
1
=(1,1, 0)
T
,α
2
=(0,0,1)
T
. 当λ=0,由(0E-A)χ=0,系数矩阵[*],得特征向量α
3
=(1, -1,0)
T
. 容易看出α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,-1,0)
T
那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换χ=Qy下,二次型f(χ
1
,χ
2
,χ
3
)化为标准形 f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ=y
T
∧y=2y
1
2
+2y
2
2
. (3)由f(χ
1
,χ
2
,χ
3
)=χ
1
2
+χ
2
2
+2χ
3
2
+2χ
1
χ
2
=(χ
1
+χ
2
)
2
+2χ
3
2
=0, 得[*] 所以方程f(χ
1
,χ
2
,χ
3
)=0的通解为:k(1,-1,0)
T
其中k为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/CbVRFFFM
0
考研数学一
相关试题推荐
设f(x)是以T为周期的连续函数(若下式中用到f’(x),则设f’(x)存在),则以下4个结论,不正确的是()
当x→0时,下列3个无穷小按后面一个无穷小比前一个高阶的次序排列,正确的次序是()
微分方程的通解为y=___________.
设线性方程组添加一个方程ax1+2x2+bx3一5x4=0后,成为方程组a、b满足什么条件时,(*)(**)是同解方程组。
微分方程满足初始条件的特解是________.
微分方程满足初始条件的特解是____________.
设y=y(x)是由方程y3+xy+x2一2x+1=0确定并且满足y(1)=0的函数,则=_________.
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为__________.
A,B是n阶方阵,则下列公式正确的是()
随机试题
下列诗句所描写的我国名山大川,按照从北到南的顺序,排列正确的是()。①会当凌绝顶,一览众山小②坚冰连夏处,太白接青天③横看成岭侧成峰,远近高低各不同④罗浮山下四时春,卢橘杨梅次第新
甲房地产开发公司(以下简称甲公司)拟开发一写字楼项目,该项目的优势初步定为突出工程质量优良和顶级物业服务。为使该写字楼项目符合市场需求,甲公司委托乙房地产经纪公司(以下简称乙公司)开展市场调查,进行项目定位,制定广告促销策略。若该写字楼用比较定价法制定
加快培育和发展战略性新兴产业,要积极探索在海外建设()。
在吊装方案巾应该有施工步骤与工艺岗位分工,在主要吊装岗位上,应有()。
下列属于税收程序法的主要制度的有()。
昆体良提出教育的最终目的是培养()
工资分配原则不包括()。
已知一个时钟,每小时慢2分钟,下午14时整将时钟调至标准时间,当时钟走到18时50分时,标准时间为:
Eachyear,millionsofpeopleinBangladeshdrinkgroundwaterthathasbeenpollutedbynaturallyhighlevelsofarsenicpoison.
Whatcomestomindwhenyouheartheword--diversity?Issuesofraceorgendermayspringtomind.Equalrights?Orminorityiss
最新回复
(
0
)