首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量. (1)求A的另一特征值和对应的特征向量; (2)求矩阵A.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量. (1)求A的另一特征值和对应的特征向量; (2)求矩阵A.
admin
2017-06-26
26
问题
设3阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(-1,2,-3)
T
,都是A的属于特征值6的特征向量.
(1)求A的另一特征值和对应的特征向量;
(2)求矩阵A.
选项
答案
(1)因为λ
1
=λ
2
=6是A的二重特征值,故A的属于特征值6的线性无关的特征向量有2个,有题设可得α
1
,α
2
,α
3
的一个极大无关组为α
1
,α
2
,故α
1
,α
2
为A的属于特征值6的线性无关的特征向量. 由r(A)=2知|A|=0,所以A的另一特征值为λ
3
=0. 设λ
3
=0对应的特征向量为α=(χ
1
,χ
2
χ
3
)
T
,则有α
i
T
α=0(i=1,2), 即[*] 解得此方程组的基础解系为α=(-1,1,1)
T
,即A的属于特征值λ
3
=0的特征向量为kα=k(-1,1,1)
T
(k为任意非零常数). (2)令矩阵P=[α
1
α
2
α
3
],则有 [*] 计算可得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/CLSRFFFM
0
考研数学三
相关试题推荐
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
已知a1=(1,4,0,2)T,a2=(2,7,1,3)Ta3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(Ⅰ)a,b取何值时,β不能由a1,a2,a3线性表示?(Ⅱ)a,b取何值时,β可由a1,a2,a3线性表示?并写出此表示式.
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设A为三阶方阵,A1,A2,A3表示A中三个列向量,则|A|=().
函数y=C1ex+C22e-2x+xex满足的一个微分方程是().
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
设随机变量X服从于参数为(2,p)的二项分布,随机变量y服从于参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}=__________.
曲线r=1+cosθ的全长为_____.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
“君子博学而日参省乎己,则知明而行无过矣”。这句话体现的德育方法是()。
按风湿性疾病的分类,不属于弥漫性结缔组织病的是
猪巴氏杆菌病急性型的病理变化是()
机体排出水分的途径有()。
男,56岁,阵发性腹痛6天,伴恶心、腹胀2天入院,无发热。体检:腹膨隆,见肠型,肠鸣音亢进,有气过水声,腹部平片见腹中部扩张小肠呈“阶梯状”液平,结肠内少量积气。可能的诊断是()
下列属于竣工验收报告的主要内容的有()。
上海公民孙某2009年8月从中国境内取得的收入情况如下:1.取得工资收入10000元。2.一次性取得演讲收入20000元。3.出版学术专著一部,出版社支付稿酬90000元。4.购买福利彩票中奖所得30000元。2009年8月孙某取得的演讲收入
国有独资公司是指由国有法人企业投资设立的有限责任公司。()
根据所给的经济业务编制会计分录。某企业2007年末损益类账户结转前的余额如下:(单位:万元)主营业务收入440(贷)主营业务成本300(借)营业税金及附加40(借)其他业务收入100(贷)其他业务成本20(借)管理费用
Adepositof120dollarsisneededwhen______aroominthishotel.
最新回复
(
0
)