[2011年] 已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分 I=xyf″xy(x,y)dxdy.

admin2019-05-10  54

问题 [2011年]  已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分
I=xyf″xy(x,y)dxdy.

选项

答案将二重积分化为累次积分直接进行计算.同定积分一样,要让被积函数含偏导的子函数先进入微分号,用分部积分法求出二元函数. 解一 将二重积分化为累次积分进行计算得到 I=[*]xyf″xy(x,y)dxdy=∫01ydy∫01xf″xy(x,y)dx=∫01ydy∫01xdf′y(x,y) =∫01[xf′y(x,y)∣01一∫01f′y(x,y)dx]ydy=∫01f′y(1,y)ydy一∫0101f′y(x,y)dxdy =-∫01dx∫01yf′y(x,y)dy(因f(1,y)=0,故f′y(1,y)=0) =-∫01[∫01ydf(x,y)]dx=-[∫01yf(x,y)∣01dx-∫01dx∫01(x,y)dy] =一∫01f(x,1)dx+∫0101f(x,y)dxdy=[*]f(x,y)dxdy=a. 解二 因f(x,y)的二阶导数连续,故f″xy(x,y)=f″xy(x,y),所以f″xy(x,y)dy=f″yx(x,y)dy=df′x(x,y), 又f′x(x,y)dx=df(x,y),则 I=∫01xdx∫01yf″xy(x,y)dy=∫01xdx∫01yf″yx(x,y)dy=∫01xdx∫01ydf′x(x,y) =∫01[yf′x(x,y)∣01—∫01f′x(x,y)dy]xdx=∫01f′x(x,1)dx一∫01xdx∫01f′x(x,y)dy =一∫01dy∫01xf′(x,y)dx (因f(x,1)=0,故f′x(x,1)=0) =∫01dy∫01xdf(x,y)=一∫01[xf(x,y)∣01一∫01f(x,y)dx]dy=∫0101f(x,y)dxdy=a.

解析
转载请注明原文地址:https://jikaoti.com/ti/CLLRFFFM
0

最新回复(0)