首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=b的解是x=_________________.
设 其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=b的解是x=_________________.
admin
2021-02-25
24
问题
设
其中a
i
≠a
j
(i≠j,i,j=1,2,…,n),则线性方程组A
T
x=b的解是x=_________________.
选项
答案
(1,0,…,0)
T
解析
本题考查克拉默法则和范德蒙德行列式的公式.
由于|A|是范德蒙德行列式,所以由a
i
≠a
j
(i≠j,i,j=1,2,…,n)知|A|≠0,因此|A
T
|=|A|≠0,故方程组A
T
x=b有唯一解,而(1,0,…,0)
T
显然满足A
T
x=b,故方程组的解为x=(1,0,…,0)
T
.
转载请注明原文地址:https://jikaoti.com/ti/BpARFFFM
0
考研数学二
相关试题推荐
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式abc2≤27()5(a>0,b>0,c>0).
设x1=10,xn+1=(n=1,2,…),试证数列{xn}极限存在,并求此极限.
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的()
设f(χ)=3χ2+χ2|χ|,则使f(n)(0)存在的最高阶数n=
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
随机试题
噎膈,在下列何期治疗时需加入滋拼血润燥之品
下列属于城镇体系规划强制性内容的是()。
在我国,信用证的有效期通常为1年。()
()将各类方案的各种因素进行综合考虑比较,从中选择大部分因素比较好的方案。
下述四组物品中,不准随身携带上飞机的是()。
送养人可以是()公民。
表格中对应的物质不能实现如图2所示转化的是()。
正当法律程序仅仅具有工具性价值。
设A,B是可逆矩阵,且A与B相似,则下列结论错误的是
Wehaveavacancyforatraineeinourheadoffice.Maindutieswillbeofficeworkwithsomereceptionandtelephonework.T
最新回复
(
0
)