首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点,且x1<x2,则至少存在一点ε,使( )。
若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点,且x1<x2,则至少存在一点ε,使( )。
admin
2021-07-15
36
问题
若函数f(x)在区间(a,b)内可导,x
1
和x
2
是区间(a,b)内任意两点,且x
1
<x
2
,则至少存在一点ε,使( )。
选项
A、f(b)-f(a)=f‘(ε)(b-a),其中a<ε<b
B、f(b)-f(x
1
)=f’(ε)(b-x
1
),其中x
1
<ε<b
C、f(x
2
)-f(x
1
)=f’(ε)(x
2
-x
1
),其中x
1
<ε<x
2
D、f(x
2
)-f(a)=f’(ε)(x
2
-a),其中a<ε<x
2
答案
C
解析
所给表达式皆为函数增量、自变量增量与区间内某点导数值的关系,可考虑拉格朗日中值定理。
由于拉格朗日中值定理需要函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,而题设条件只给出f(x)在(a,b)内可导,这并不能保证f(x)在[a,b]上连续,而A,B,D所给各表达式分别为f(x)在[a,b],[x
1
,b],[a,x
2
]上的拉格朗日中值定理形式,可知这三项都不符合定理条件,应排除。
由于f(x)在(a,b)内可导,可知f(x)在(a,b)内连续,又由于x
1
,x
2
∈(a,b)且x
1
<x
2
,可知f(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,即f(x)在[x
1
,x
2
]上满足拉格朗日中值定理的条件,可知C成立,故选C.
转载请注明原文地址:https://jikaoti.com/ti/BglRFFFM
0
考研数学二
相关试题推荐
设z=z(x,y)由方程,=0所确定,其中,是任意可微函数,则=_________。
[*]
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
对于实数x>0,定义对数函数依此定义试证:
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
已知向量组α1,α2,α3,α4线性无关,则向量组()
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且证明:存在,使得f’(ξ)+f’(η)=ξ2+η2。
当x→∞,若则a,b,c的值一定为[].
设f(χ)为连续函数,证明:(1)∫0π(sinχ)=f(sinχ)dχ=πf(sinχ)dχ;(2)∫02π(|sinχ|)dχ=4f(sinχ)dχ.
随机试题
ISO2631标准中,人体对振动反应的有3个不同的感觉界限,即_______、_______、_______。
PresidentCoolidgesstatement,ThebusinessofAmericaisbusiness,stillpointstoanimportanttruthtoday—thatbusinessinst
遗传密码的简并性是指
属于社会状况评估的是
对生产、上市和使用的药品的合法性进行监督,对非法药品依法进行处罚包括新药管理、药品生产上市管理、进口药品注册管理、非处方药注册管理等
因技术进出口合同争议提起诉讼或者申请仲裁的期限为()年。
静置设备找正或找平应采用的正确方法是()进行调整。
下列项目中,可以采用三栏式格式的是()。(5.3)
债券的票面收益与面额的比率是()。
关于奔腾处理器芯片技术的描述中,正确的是()。
最新回复
(
0
)