设A为n阶矩阵,A*是A的伴随矩阵,齐次线性方程组Ax=0有两个线性无关的解,则 ( )

admin2020-03-24  19

问题 设A为n阶矩阵,A*是A的伴随矩阵,齐次线性方程组Ax=0有两个线性无关的解,则    (    )

选项 A、A*x=0的解均是Ax=0的解
B、Ax=0的解均是A*x=0的解
C、Ax=0与A*x=0无非零公共解
D、Ax=0与A*x=0仅有两个非零公共解

答案B

解析 因为齐次线性方程组Ax=0有两个线性无关的解向量,所以方程组Ax=0的基础解系所含向量个数n一r(A)≥2,于是r(A)≤n一2,由此得知A*=O.任意n维列向量均是方程组A*x=0的解.因此方程组Ax=0的解均是A*x=0的解,选项(B)是正确的.选项(A)显然不对.
    对于选项(C),(D),由于方程组Ax=0的基础解系至少含有两个解向量,故Ax=0有无穷多个非零解,与A*x=0的公共解中也有无穷多个非零解.显然(C),(D)不正确.
转载请注明原文地址:https://jikaoti.com/ti/BXaRFFFM
0

最新回复(0)