设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵. 证明矩阵Q可逆的充分必要条件是αTA-1α≠b.

admin2018-06-15  34

问题 设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.
证明矩阵Q可逆的充分必要条件是αTA-1α≠b.

选项

答案用拉普拉斯展开式及行列式乘法公式,有 [*] =|A|2(b-αTA-1α). 因为矩阵A可逆,行列式|A|≠0,故|Q|=|A|(b-αTA-1α). 由此可知,Q可逆的充分必要条件是b-αTA-1α≠0,即αTA-1α≠b.

解析
转载请注明原文地址:https://jikaoti.com/ti/BK2RFFFM
0

最新回复(0)