首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求使得不等式≤ln(x2+y2)≤A(x2+y2)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
求使得不等式≤ln(x2+y2)≤A(x2+y2)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
admin
2016-10-20
43
问题
求使得不等式
≤ln(x
2
+y
2
)≤A(x
2
+y
2
)在区域D={(x,y)|x>0,y>0}内成立的最小正数A与最大负数B.
选项
答案
在区域D={(x,y)|x>0,y>0}内 ln(x
2
+y
2
)≤A(x
2
+y
2
)[*] 因此使上式成立的常数4的最小值就是函数f(x,y)=[*]在区域D上的最大值.令r=x
2
+y
2
,则A的最小值就是函数F(r)=[*]在区间(0,+∞)内,的最大值.计算可得 [*] 因此使上式成立的常数B的最大值就是函数g(x,y)=xyln(x
2
+y
2
)在区域D上的最小值.计算可得 [*] 由此可知g(x,y)在D中有唯一驻点[*].因为在区域D的边界{(x,y)|x=0,y≥0}与{(x,y)|x≥0,y=0}上函数g(x,y)=0,而且当x
2
+y
2
≥1时g(x,y)≥0,从而[*] 就是g(x,y)在D内的最小值.即B的最大值是[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/AoxRFFFM
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
设有来自三个地区的10名、15名、25名考生的报告表,其中女生的报名表分别为3份、7份、5份.随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率q.
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
某城有N辆车,车牌号从1到N,某观察员在某地把所遇到的n辆车的牌号抄下(可能重复抄到车牌号),问为抄到最大号码正好k的概率(1≤k≤N)是多少?
N件产品中有N1件次品,从中任取n件(不放回),其中1≤n≤N.(1)求其中恰有k件(k≤n且k≤N1)次品的概率;(2)求其中有次品的概率;(3)如果N1≥2,n≥2,求其中至少有两件次品的概率.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
随机试题
甲为担保对乙的债务,于2015年3月1日与乙签订质押合同,承诺将自己的越野车质押给乙。同年4月1日甲交付越野车,但未将随车工具箱交付给乙。对此,下列说法正确的是
胺碘酮的主要作用是
根据《建筑法》规定,两个以上不同资质等级的单位实行联合共同承包的,应当按照资质等级( )的单位的业务许可范围承揽工程。
2013年2月1日,甲建筑公司(本题下称“甲公司”)与乙房地产开发商(本题下称“乙公司”)签订了一份住宅建造合同,合同总价款为60000万元,建造期限2年,乙公司于开工时预付20%合同价款。甲公司于2013年3月1日开工建设,估计工程总成本为50000万元
请结合下列事例和所学职业道德知识,回答问题:1967年,王安公司上市,股价暴涨,资产达到6000万美元。1975年,“王安”成功开发“WPS”文字处理系统,大受市场青睐,三年后,“王安”成为全球最大文字系统供应商。1984年,“王安”资产达20亿美元,与
世界各地的建筑风格因受时代的政治、社会、经济、建筑材料和建筑技术的制约以及建筑设计思想、观念和艺术素养的影响而有所不同。下列关于建筑风格的说法错误的是:
以下表述中没有体现“宪法是民主制度法律化的基本形式”的是()
设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F’(2)等于()
设a1n=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
TheannualcampaigntomakeSingapore’sthreemillionpeoplemorepoliteendedyesterdayandwasimmediatelyfollowedbyanother
最新回复
(
0
)