首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续,且满足 f(x)[∫0xetf(t)dt+1]=x+1. 求f(x)的表达式,并证明所得到的f(x)的确在(一∞,+∞)上连续.
设f(x)在区间(一∞,+∞)上连续,且满足 f(x)[∫0xetf(t)dt+1]=x+1. 求f(x)的表达式,并证明所得到的f(x)的确在(一∞,+∞)上连续.
admin
2018-09-20
37
问题
设f(x)在区间(一∞,+∞)上连续,且满足
f(x)[∫
0
x
e
t
f(t)dt+1]=x+1.
求f(x)的表达式,并证明所得到的f(x)的确在(一∞,+∞)上连续.
选项
答案
化成常微分方程处理.为此,令 F(x)=∫
0
x
e
t
f(t)dt+1, 有F’(x)=e
x
f(x),f(x)=e
-x
F’(x).代入原给方程,得 e
-x
F’(x)F(x)=x+1, F’(x)F(x)=(x+1)e
x
, [*] 两边积分,得 [*] 因F(0)=∫
0
0
e
t
f(t)dt+1=1,所以[*]故 F
2
(x)=2xe
x
+1,F(x)=[*] 但因F(0)=1>0,所以取“+”,于是 [*] 下面证明,在区间(一∞,+∞)上,函数φ(x)=2xe
x
+1>0. 事实上,φ’(x)=2(x+1)e
x
,令φ’(x)=0,得x=一1.当x<一1时,φ’(x)<0;当x>一1时,φ’(x)>0,所以φ
min
=φ(一1)=1—2e
-1
=[*] 从而知f(x)表达式的分母根号内恒为正,故f(x)在(一∞,+∞)上连续.讨论完毕.
解析
转载请注明原文地址:https://jikaoti.com/ti/ADIRFFFM
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的正、负惯性指数分别为p=______,q=_______.
设f(x)在x=0处n(n≥2)阶可导且,求f(0),f’(0),…,f(n)(0).
设某产品的需求函数Q=Q(P)是单调减少的,收益函数R=PQ,当价格为P0,对应的需求量为Q0时,边际收益R’(Q0)=2,而R’(P0)=-150,需求对价格的弹性EP满足|EP|=求P0和Q0.
已知某零件的横截面是一个圆,对横截面的直径进行测量,其值在区间(1,2)上服从均匀分布,则横截面面积的数学期望为_______,方差为_________.
设A=其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是______.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设总体X~N(μ,σ12),y~N(μ,σ22),且X,Y相互独立,来自总体X,Y的样本均值为样本方差为S12,S22,记的数学期望.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令|Xi一μ|,求Y的数学期望与方差.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
把当x→0+时的无穷小量排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
随机试题
ThepresidentisoftenawakenedbyanoisycrowdwhichassemblesontheWhiteHouse.
肺内小叶中心结节见于
A.呼B.笑C.歌D.哭E.呻属于“水”的五声是
证券交易所会员的有关信息资料,以及相关的业务报表和账册等,不得向任何机构提供。()
A公司是一家制造医疗设备的上市公司,每股净资产是4.6元,预期权益净利率是16%,当前股票价格是48元。为了对A公司当前股价是否偏离价值进行判断,投资者收集了以下4个可比公司的有关数据。要求:使用市净率(市价/净资产比率)模型估计目标企业股票价值时
2014年6月23日,食品安全法修订草案将________十二届全国人大常委会第几次会议审议。国家食药监管总局官员介绍,“重典治乱”成为本次修法的主导思想,将设立最严格的程序________法律制度,建立最严格的法律责任制度,大幅提高企业违法成本,政府失职
交际情景主要包括三个要素:交际者、交际目的、()。
Haveyoueverwonderedwhatourfutureislike?Practicallyallpeople【B1】______adesiretopredicttheirfuture【B2】______.Mos
TravelAcrossAfricaForsixhoursweshotthroughthebarren(荒芜的)landscapeoftheKaroodesertinSouthAfrica.Justrock
Musiccanspreadacrosseverywhereand【T1】______thedistancebetweenpeopleofdifferentcountries.AmericanNBAstarKobeBryan
最新回复
(
0
)