首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为1,证明: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在数μ,对任意正整数k,有Ak=μk-1A.
设n阶矩阵A的秩为1,证明: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在数μ,对任意正整数k,有Ak=μk-1A.
admin
2016-09-19
44
问题
设n阶矩阵A的秩为1,证明:
(1)A可以表示成n×1矩阵和1×n矩阵的乘积;
(2)存在数μ,对任意正整数k,有A
k
=μ
k-1
A.
选项
答案
(1)将A以列分块,则r(A)=r(α
1
,α
2
,…,α
n
)=1表明列向量组α
1
,α
2
,…,α
n
的极大线性无关组由一个非零向量组成,设为α
i
=[a
1
,a
2
,…,a
n
]
T
(a
i
≠0),其余列向量均可由a
i
线性表出,设为a
i
=b
j
a
i
(j=1,2,…,n;j=i时,取b
i
=1),则 A=[α
1
,α
2
,…,α
n
]=[b
1
α
i
,b
2
α
i
,b
n
α
i
]=α
i
[b
1
,b
2
,…,b
n
]=[*] [b
1
,b
2
,…,b
n
]. (2)记α=α
i
=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
,则 A=αβ
T
,A
k
(αβ
T
)
k
(αβ
T
)(αβ
T
)…(αβ
T
)=α(β
T
α)(β
T
α)…(β
T
α)β
T
. 记β
T
α=a
1
b
1
+a
2
b
2
+…+a
n
b
n
=μ,则 A
k
=αμ
k-1
β
T
=μ
k-1
A.
解析
转载请注明原文地址:https://jikaoti.com/ti/9LxRFFFM
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
A、 B、 C、 D、 D
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设求f(x)的间断点,并说明间断点所属类型.
某彩票每周开奖一次,每次提供十万分之一的中奖机会,且各周开奖是相互独立的.某彩民每周买一次彩票,坚持十年(每年52周),那么他从未中奖的可能性是多少?
随机试题
茶艺人员的良好坐姿尤为重要,这仅仅是因为良好坐姿便于茶艺操作的进行。
坚持四项基本原则,核心在于坚持()。
根据基础埋置深度的不同,基础分为浅基础和深基础,一般情况下,基础埋深不超过()时叫浅基础。
太阳能平板集热器的玻璃盖板与吸热板之间装设蜂窝状结构的元件,抑制空气对流、减少集热器的对外辐射损失,是属于削弱换热途径中的( )。
若商品流通企业有商品历年销售量统计数据,在进行下一年销售量预测时,可采用的预测:疗法有()。
ABC公司正在着手编制明年的财务计划,公司财务主管请你协助计算其加权资本成本。有关信息如下:(1)公司银行借款利率当前是10%,明年将下降为8.93%;(2)公司债券目前市价580万元,面值为650万元,票面利率为8%,尚有5年到期,分期付
“君子欲化民成俗,其必由学乎”“古之王者,建国君民,教学为先”体现了()的教育目的论。
根据《行政诉讼法》的规定,下列各项可以作为提起行政诉讼事由的是()。
Thefollowingparagraphsaregiveninawrongorder.ForQuestions41-45,youarerequiredtoreorganizetheseparagraphsintoa
A、womenandmenB、womenandchildrenC、women,children,andmenB
最新回复
(
0
)