设f(x)在(-∞,+∞)内连续,以T为周期,证明: (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期为Tf(x)dx=0.

admin2016-09-13  37

问题 设f(x)在(-∞,+∞)内连续,以T为周期,证明:
(1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数);
(2)∫0xf(t)dt以T为周期0Tf(x)dx=0;
(3)∫f(x)dx(即f(x)的全体原函数)周期为Tf(x)dx=0.

选项

答案(1)[*]∫aa+Tf(x)dx=f(a+T)-f(a)=0 故∫aa+Tf(x)dx=∫aa+Tf(x)dx|a=0=∫0Tf(x)dx. (2)∫0xf(t)dt以T为周期<=>∫0x+Tf(t)dt-∫0xf(t)dt=∫xx+Tf(t)dt[*]∫0Tf(t)dt=0. (3)只需注意∫f(x)dx=∫0xf(t)dt+C,∫0xf(t)dt是f(x)的一个原函数.

解析
转载请注明原文地址:https://jikaoti.com/ti/8nxRFFFM
0

最新回复(0)