首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设A= (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2018-11-23
26
问题
设A=
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: |λE-A|=[*]=(λ-1)(λ+1)
2
. 于是A的特征值为1(一重)和-1(二重). 要使A可对角化,只需看特征值-1.要满足3-r(A+E)=2,即r(A+)=1, [*] 得k=0, [*] (2)求属于-1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2χ
1
+2χ
2
-χ
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A-E)X=0的一个非零解: [*] 得(A-E)X=0的同解方程组[*] 得解η=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 U
-1
AU=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/8b1RFFFM
0
考研数学一
相关试题推荐
设x∈[0,a]时f(x)连续且f(x)>0(x∈(0,a]),又满足f(x)=,求f(x).
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明:(1)存在η∈(,1),使得f(η)=η;(2)对任意的k∈(—∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
由指数分布的密度函数导出指数分布的分布函数以及数学期望和方差.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB-1。
设A,B都是三阶矩阵,A相似于B,且|E—A|=|E一2A|=|E一3A|=0,则|B-1+2E|=___________.
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X.已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=__________.
微分方程y’’-7y’=(x-1)2的待定系数法确定的特解形式(系数的值不必求出)是________
求下列行列式的值:
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T.α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
随机试题
测量最简单的数值化形式是()
领导艺术的基础是()
引起夏季小儿腹泻的病原菌主要是:()
()发布了《加强银行公司治理的原则》,提出银行实现稳健公司治理的14条原则。
国际陆空货运的运输保险分类为()。
()包括行为者所处的各种环境、机遇、所从事工作的特点和难度,以及工作与人的相互作用,他人对行为者的强制或约束、鼓励的作用等。
对义务教育中“义务”的理解,以下说法中,不正确的是()。
我国谚语中的“螳螂捕蝉,黄雀在后”体现了食物链的原理。若鹰迁入了蝉、螳螂和黄雀所在的树林中,捕食黄雀并栖息于林中。下列叙述正确的是()
下列各组词中不属于同音词的是()。
Onlyafterthesecretarysawthetraindisappearinsight_____therailwaystation.
最新回复
(
0
)