设f(x)是连续函数,且有∫f(x)cosxdx=+C,又因为F(x)是f(x)的原函数,且满足F(0)=0,则F(x)= __________.

admin2015-11-17  35

问题 设f(x)是连续函数,且有∫f(x)cosxdx=+C,又因为F(x)是f(x)的原函数,且满足F(0)=0,则F(x)= __________.

选项

答案一cosx+1

解析 先将∫f(x)cosxdx==sinxcosx,则f(x)=sinx,又因为F(0)=0,则F(x)=∫0xf(t)dt=∫0xsinfdt=-cost|0x=-cosx+1.
转载请注明原文地址:https://jikaoti.com/ti/8Yr4FFFM
0

最新回复(0)