首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 函数y=x2x在区间(0,1]上的最小值为__________.
[2009年] 函数y=x2x在区间(0,1]上的最小值为__________.
admin
2021-01-19
45
问题
[2009年] 函数y=x
2x
在区间(0,1]上的最小值为__________.
选项
答案
利用命题1.2.5.4或命题1.2.5.5求之. 解一 y=e
2xlnx
,故y′=e
2xlnx
(21nx+2)=x
2x
(21nx+2),令y′=0得驻点为x
1
=l/e. 此时y
1
=e
-2/e
.而 y(1)=1,y(0+0)=[*]=e
2.0
=1. 由命题1.2.5.6知,y=x
2x
在区间(0,1]上的最小值为 m=min{y(0),y(x1),y(1))=min{1,e
-2/e
,1)=e
-2/e
. 解二 函数y=x
2x
在区间(0,1)上连续,在(0,1)区间内只有一个驻点x
1
=1/e,又 y″=x
2x
(2lnx+2)
2
+x
2x
(2/x),得y″(1/e)=[*]>0.故x
1
=1/e为y=x
2x
的极小值点,该极小值为y
1
=e
-2/e
.由命题1.2.5.5知,该极小值即为函数y在区间(0,1]上的最小值.
解析
转载请注明原文地址:https://jikaoti.com/ti/84ARFFFM
0
考研数学二
相关试题推荐
求微分方程y’’(x+y’2)=y’满足初始条件y(1)=y’(1)=1的特解.
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数A.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程。
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
对数曲线y=lnx上曲率半径最小的点是().
(2010年试题,11)函数y=ln(1—2x)在x=0处的n阶导数y(n)(0)=________.
随机试题
A.裂片B.松片C.含量不均匀D.色斑E.片重差异超限片重差异超限或可溶性成分的迁移会产生()。
下列关于表面活性剂的表述错误的是
佐药的含义,下列不正确的是
A、丹参B、五灵脂C、红花D、乳香E、水蛭患者,女,26岁。平素痛经,半年来又患风湿痹痛,拘挛麻木。宜选用的药是
某工业企业拥有一宗土地,因融资需要,计划以该土地使用权进行抵押贷款,并于2008年10月8日委托某评估公司进行土地价格评估。该企业所拥有的土地位于华南H市,远离城区,为独立工矿用地,总面积为1500m2。宗地西高东低,地下水位适中,东南角有一自采水井,用于
费劳德数的物理意义是:
下列关于CAMELs评级的说法,正确的有( )。
材料1 丰收的季节,陕北高原到处是红彤彤的苹果。63岁的赵家村村民老赵看着果实,满眼的喜悦。借助改革开放的东风,四十年来他用劳动创造了财富,改变了全家的生活状况,也见证了他们村乃至黄土高原翻天覆地的变化。 1987年,来自远方的“包产到户”消息传遍
设函数且λ>0,则∫—∞+∞xf(x)dx=______。
下面对软件描述错误的是()。
最新回复
(
0
)