首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
admin
2017-12-29
40
问题
设A为二阶矩阵,α
1
,α
2
为线性无关的二维列向量,Aα
1
=0,Aα
2
=2α
1
+α
2
,则A的非零特征值为________。
选项
答案
1
解析
根据题设条件,得
A(α
1
,α
2
)=(Aα
1
,Aα
2
)=(α
1
,α
2
)记P=(α
1
,α
2
),因α
1
,α
2
线性无关,故P=(α
1
,α
2
)是可逆矩阵。由AP=
可得
P
—1
AP=
,则A与B相似,从而有相同的特征值。
因为
所以A的非零特征值为1。
转载请注明原文地址:https://jikaoti.com/ti/7mKRFFFM
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…是独立同分布的随机变量序列,E(Xi)=μ,D(Xi)=σ2,i=1,2,…,令证明:随机变量序列{Yn}依概率收敛于μ.
设f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:存在x1∈[0,1]使得|f(x1)|>4;
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是,r阶单位阵.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m一s.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a—t)dt。证明:F(ga)-2F(A)=f2(A)-f(0)f(2a).
设A是n阶矩阵,A*是A的伴随矩阵,若|A|=a,则行列式等于().
设四阶行列式D=,则第3列各元素的代数余子式之和A13+A23+A33+A34=().
随机试题
关于1型糖尿病,下列说法错误的是
药物的作用靶点有()。
在下列关于设置照明专用变压器的表述中哪一项是正确的?()
某大型海上工程孤立墩混凝土承台施工,其混凝土的配合比为1:1.5:2.50,水灰比为0.40,水泥用量为444kg/m3。承台的平面尺寸为10m×10m,承台底标高为一0.5m,顶标高为+3.5m。9根直径1.2m的钢管桩伸入承台混凝土中2m(桩芯混凝土已
2018年6月,甲公司新增实收资本1500万元、资本公积500万元;启用其他账簿8本。甲公司上述行为应缴纳印花税()元。
男性和女性之间的工资性报酬差别的形成,不包括()原因。
下列关于收入确认的说法,正确的有()。
下列()数代表十六进制数。
下列关于查询设计视图中“设计网格”中行的作用的叙述,正确的是()。
网购(onlineshopping)是电子商务的一种形式。顾客轻点鼠标,足不出户就可以通过网络购买商品或服务。物美价廉的商品令越来越多的人迷上了网购。网购随时随地都可进行,极为便利,非常切合年青一代的需要。据预测,中国网购人数将以更快的速度持续增长
最新回复
(
0
)