首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
admin
2019-01-14
21
问题
设α
1
,α
2
,…,α
n-1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n-1
正交,则( )
选项
A、α
1
,α
2
,…,α
n-1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知B选项错;
若α
i
(i=1,2,…,n-1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n-1
,β
1
线性无关,β
2
=2β
1
,所以选项A和D错误;故选C。
下证C选项正确:
因α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的常数k
1
,k
2
,…,k
n-1
,l
1
,l
2
,
使
k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+l
1
β
1
+l
2
β
2
=0,
又因为α
1
,α
2
,…,α
n-1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n-1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, ①
(l
1
β
1
+l
2
β
2
,β
2
)=0, ②
联立两式,l
1
×①+l
2
×②可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得 l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。
转载请注明原文地址:https://jikaoti.com/ti/7W1RFFFM
0
考研数学一
相关试题推荐
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值和特征向量.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
设周期为2π的函数f(x)=的傅里叶级数为(I)求系数a0,并证明an=0,(n≥1);(Ⅱ)求傅里叶级数的和函数g(x)(-π≤x≤π),及g(2π)的值.
求下列函数项级数的收敛域:
求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体的体积.
设A,B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B|A),则必有
设A,B均是n阶矩阵,下列命题中正确的是
设都是来自正态总体N(μ,σ2)的容量为n的两个相互独立的样本均值,试确定n,使得两个样本均值之差的绝对值超过σ的概率大约为0.01.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<P<1.(I)试求:的概率分布;(Ⅱ)证明:.
随机试题
某次考试共有数学、英语、语文三门,学生可选择任意几门报考.若三名同学都选择了其中两门,则有且只有两名同学报考的科目完全相同的概率为().
既功能补肾助阳,又能润肠通便的药是
关于发热机制的叙述,不正确的是
某试验检测机构受地方公路管理部门委托对A公路进行技术状况评定工作。A公路基本情况:公路技术等级为一级,长度为10.211km,双向六车道,路面类型为沥青混凝土路面,K2+000~K3+000间有一座中桥,评定为5类桥。检测机构选择多功能路况快速检测系统检测
房地产市场调研中,所收集数据的多少和复杂程度取决于()。
()是根据危害辨识和风险评价的结果、法律法规要求,制定包括监测对象与监测频次的监测计划,并以此对企业活动的必要基本过程进行监测。
证券投资基金可以通过有效的资产组合最大限度地()。
下列各项中,属于费用的有()。
在现金清查中,对于无法查明原因的现金短缺,经批准后应计入营业外支出。()
Thenormalhumandailycycleofactivityisofsome7-8hours’sleepalternationwithsome16-17hours’wakefulnessandthatthe
最新回复
(
0
)