首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
admin
2018-07-27
42
问题
设向量β可由向量组α
1
,α
2
,…,α
n
线性表示,证明:表示唯一的充分必要条件是向量组α
1
,α
2
,…,α
n
线性无关.
选项
答案
由条件有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=β…①.必要性.设表示唯一,若λ
1
α
1
+λ
2
α
2
+…+λ
n
α
n
=0…②,①与②两端分别相加,得 (k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
n
+λ
n
)α
n
=β…③,由表示唯一,比较①与③,得k
j
=k
j
+λ
j
(j=1,2,…,n)[*]λ
j
=0(j=1,2,…,n),[*]α
1
,α
2
,…,α
n
线性无关.充分性:设α
1
,α
2
,…,α
n
线性无关,若还有s
1
α
1
+s
2
α
2
+…+s
n
α
n
=β…④,①-④,得(k
1
-s
1
)α
1
+(k
2
-s
2
)α
2
+…+(k
n
-s
n
)α
n
=0,由α
1
,α
2
,…,α
n
线性无关,得k
j
=s
j
(j=1,2,…,n),即④式必为①式,故表示唯一.
解析
转载请注明原文地址:https://jikaoti.com/ti/7KIRFFFM
0
考研数学三
相关试题推荐
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
设n阶矩阵A=,则|2A|=_______.
已知方程组总有解,则λ应满足_______.
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
已知A为三阶方阵,A2—A—2E=D,且0<|A|<5,则|A+2E|=________。
已知A,B,C都是行列式值为2的三阶矩阵,则D=________。
随机试题
为帮助社区贫困家庭改善生活质量,摆脱贫困状态,社会工作者对社区贫困家庭情况进行摸查,对有就业技能的人员通过多种形式和渠道提供职业技能培训,转变就业观念。社会工作者所做的上述工作是最低生活保障服务内容中的()。
正常前庭导水管的宽度小于
工某,长期抑郁,现眩晕心悸,少寐,心烦易怒,舌红,苔少,脉弦细数,治疗方剂宜选
治疗“血瘀”所致的“产后恶露不绝”的代表方是
总进度计划不属于()。
信息披露的方式主要包括:发行人及其主承销商应当将发行过程中披露的信息刊登在至少两种中国证监会指定的报刊,同时将其刊登在中国证监会指定的互联网网站,并置备于中国证监会指定的场所,供公众查阅。( )
中国古典园林对树木花卉的配置和种植,重在表现自然,讲究形与神、意与境的和谐统一。()
一则公益广告劝告人们,酒后不要开车,直到你感到能安全驾驶的时候才开。然而,在医院进行的一项研究中,酒后立即被询问的对象往往低估他们恢复驾驶能力所需要的时间。这个结果表明,在驾驶前饮酒的人很难遵循这个广告的劝告。下面哪项如果为真,能最有力地支持以上结论?
Whichisthenewpackaging?
HowShouldYouBuildupYourVocabularyExactlywhatdoyoudoduringanormalday?Howdoyouspendyourtime?PaulT.Rank
最新回复
(
0
)