首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
admin
2018-07-27
41
问题
设向量β可由向量组α
1
,α
2
,…,α
n
线性表示,证明:表示唯一的充分必要条件是向量组α
1
,α
2
,…,α
n
线性无关.
选项
答案
由条件有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=β…①.必要性.设表示唯一,若λ
1
α
1
+λ
2
α
2
+…+λ
n
α
n
=0…②,①与②两端分别相加,得 (k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
n
+λ
n
)α
n
=β…③,由表示唯一,比较①与③,得k
j
=k
j
+λ
j
(j=1,2,…,n)[*]λ
j
=0(j=1,2,…,n),[*]α
1
,α
2
,…,α
n
线性无关.充分性:设α
1
,α
2
,…,α
n
线性无关,若还有s
1
α
1
+s
2
α
2
+…+s
n
α
n
=β…④,①-④,得(k
1
-s
1
)α
1
+(k
2
-s
2
)α
2
+…+(k
n
-s
n
)α
n
=0,由α
1
,α
2
,…,α
n
线性无关,得k
j
=s
j
(j=1,2,…,n),即④式必为①式,故表示唯一.
解析
转载请注明原文地址:https://jikaoti.com/ti/7KIRFFFM
0
考研数学三
相关试题推荐
给出满足下列条件的微分方程:(I)方程有通解y=(C1+C2x+x-1)e-x;(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
证明极限不存在.
已知α1,α2,…,αs是互不相同的数,n维向量αi=(1,αi,αi2,…,αin-1)T(i=1,2,…,s),求向量组α1,α2,…,αs的秩.
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
求arctanx带皮亚诺余项的5阶麦克劳林公式.
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:
求下列函数f(x)在x=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ);(Ⅱ)f(x)=exsinx
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=________.
设n阶矩阵A=证明:行列式|A|=(n+1)an。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
随机试题
阅读材料,回答问题。材料一事实证明,我国不是需求不足,或没有需求,而是需求变了,供给的产品却没有变,质量、服务跟不上。有效供给能力不足带来大量“需求外溢”,消费能力严重外流。解决这些结构性问题,必须推进供给侧改革。
直肠癌最多见于
乳房再造自体组织的来源为
A.面部肌肉紧张,痉挛,角弓反张,惊厥B.四肢抽搐,牙关紧闭,心律失常C.大汗,头昏目眩,口唇黏膜糜烂,脱发D.吐血,咯血,便血,尿血,黄疸E.口腔黏膜充血,牙齿肿胀溃疡,少尿过量服用含朱砂的中成药会引起()。
临床上进行尸体护理的依据是
在质量控制统计方法中,通常所说的鱼刺图是指( )。
宏大公司是一家餐饮连锁上市公司。为在首都机场开设一个新门店,参加机场内一处商铺的租约竞标。出租方要求,租约合同为期5年,不再续约,租金在合同生效时一次付清。相关资料如下:(1)宏大公司目前股价40元/股,流通在外的普通股股数为2500万股。债务市值60
下列股利政策属于股利无关论的是()。
很长一段时间以来,“择校”成为无数家长心中的痛。择校,归根到底争抢的是优质教育资源。优质义务教育资源稀缺导致待价而沽的状况,根本原因在于基础教育长期投入不足和不均。经过改革开放,一些公办重点学校过多地占有了社会的资源,一方面它们可以大量使用纳税人的钱,一方
Themiddle-agedmanwasseen______outofthehouseontheafternoonofthemurder.
最新回复
(
0
)