首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
admin
2017-12-29
38
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n—r+1
,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k
1
η
1
+…+k
n—r+1
η
n—r+1
,其中k
1
+…+k
n—r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n—r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,…,ξ
n—r
=η
n—r
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n—r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n—r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n—r
ξ
n—r
=0, 即 l
1
(η
2
一η
1
)+l
2
(η
3
一η
1
)+…+l
n—r
(η
n—r+1
一η
1
)=0, 也即 一(l
1
+l
2
+…+l
n—r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n—r
η
n—r+1
=0。 由η
1
,η
2
,…,η
n—r+1
线性无关知 一(l
1
+l
2
+…+l
n—r
)=l
1
=l
2
=…=l
n—r
=0, 这与l
1
,l
2
,…,l
n—r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n—r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n—r
,线性表示,设 x一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n—r+1
ξ
n—r
=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n—r+1
(η
n—r+1
一η
1
), 则x=η
1
(1一k
2
一k
3
一…一k
n—r+1
)+k
2
η
2
+k
3
η
3
+…+k
n—r+1
η
n—r+1
, 令k
1
=1一k
2
一k
3
一…一k
n—r+1
,则k
1
+k
2
+k
3
+…+k
n—r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n—r+1
η
n—r+1
恒成立。
解析
转载请注明原文地址:https://jikaoti.com/ti/7JKRFFFM
0
考研数学三
相关试题推荐
设计算A2,并将A2用A和E表出;
设X1,X2,…,Xn是来自对数级数分布的一个样本,求p的矩估计.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
试求方程ex=ax2(a>0为常数)的根的个数.
求下列积分:
求下列极限.
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:这两条抛物线所围成的平面图形的面积Sn;
设a为正常数,则级数的敛散性为________.
设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x—y=0,x+y=2与y=0所围成的三角形区域。求条件概率密度fX|Y(x|y)。
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
随机试题
高速路上,机动车因故障暂时不能离开应急车道或路肩时,驾乘人员要下车在路边等候,但不得离开高速公路。
交通肇事罪
患者,男,30岁。工人。餐后1小时突发上腹部剧痛,很快扩散至右下腹,疼痛呈持续性,无放射,伴有恶心呕吐。发病3小时后来医院就诊体检:血压120/70mmHg,腹平,全腹压痛,反跳痛,肌紧张,以右上腹及中上腹为甚,肝浊音界不清,肠鸣音微弱。患者行立位腹平
溃疡病瘢痕性幽门梗阻术前温盐水洗胃的作用是
男,35岁。左下颌第三磨牙区疼痛5周,左侧咬肌区肿痛4周,切开见大量黄色黏稠脓液,X线片可见左侧下颌角区骨质疏松手术应注意勿损伤的解剖结构是
由于某种全局性的因素引起的股票投资收益可能变动,这种因素对市场上所有的股票收益都产生影响的风险是( )。
研究性教学方法,具有探讨、商榷、深化的特点,以学生间的集体讨论或自我发现等为主要形式,多用于高年级的教学。常见的有讨论法、发现法和练习法等。()
党的十八届五中全会提出的五大新发展理念包括“创新、协调、绿色、开放、共享”。在五大发展理念中最能体现以人民为中心的发展理念的是()。
某律师同为甲、乙两公司的常年法律顾问,而且在其顾问服务项目中均包括诉讼案件的代理,现甲、乙两公司之间因合同发生纠纷起诉至法院,两公司均要求该律师担任其代理律师。对此该律师应该怎么办?()
花园怎样反映人类的基本诉求——2013年英译汉及详解Itisspeculatedthatgardensarisefromabasicneedintheindividualswhomadethem:theneedfor
最新回复
(
0
)