首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
admin
2020-04-21
50
问题
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。
(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;
(Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
选项
答案
(1)由已知可得 φ’(t)=1一cost≥0,φ(0)=0,φ(2π)=2π, 则φ(t)在[0,2π]上单调增加,且值域为[φ(0),φ(2π)]=[0,2π]。 由x=φ(t)=t—sint在[0,2π]上连续可知其在[0,2π]上存在连续的反函数t=φ
—1
(x),且定义域为[0,2π]。所以y(x)=ψ[φ
—1
(x)]在[0,2π]上连续。 (Ⅱ)由旋转体的体积公式(绕y轴旋转),有 V=2π∫
0
2π
xydx=2π∫
0
2π
(t一sint)(1一cost)
2
dt=2π∫
0
2π
t(1一cost)
2
dt, 令t=2w—s,则 V=2π∫
0
2π
(2π—s)(1一coss)
2
ds=4π
2
∫
0
2π
(1一coss)
2
ds—V, [*] 上式中,∫
0
2π
sint(1一cost)
2
dt=∫
—π
π
sint(1一cost)
2
dt=0由周期函数与奇函数的积分性质直接得出。 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/75ARFFFM
0
考研数学二
相关试题推荐
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
[2012年]设,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为().
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该二次型为正定二次型.
[2017年]设二次型f(x1,x2,x3)=2x12一x22+ax32+2x1x2—8x1x3+2x2x3在正交变换X=QY下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵.
[2008年]设A=,则在实数域上与A合同的矩阵为().
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设.问当k为何值时,函数f(x)在其定义域内连续?为什么?
设分别讨论x→0及x→1时,f(x)的极限是否存在.
极限().
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明:数列{an}的极限存在.
随机试题
A.金铃子散B.丹参饮C.少腹逐瘀汤D.复元活血汤E.桃红四物汤(1999年第95,96题)心腹痛,痛势较轻,郁闷不适,舌暗脉沉者,治疗选用()
能感受旋转变速运动时位置变化的刺激的结构是
具有芳香气味的药材一般不适用于()。
心脏骤停后最容易发生的继发性病理变化是
金融期货交易实行保证金制度和每日结算制度,交易者均以()为交易对手。
下列关于公司债券上市的说法中,错误的是()。
BOT项目发起人( )。
李某是甲企业的中层管理人员,2018年第四季度发生了以下经济行为:(1)每月工资20000元,因表现突出,10月份另发5000元给李某作为奖励。(2)10月以160万元的价格,转让一套两年前无偿受赠获得的房产。原捐赠人取得该房屋的实际购
“网红经济和网红现象一方面受到热捧,一方面受到非议和质疑。”这表明()。
如果高层管理人员本人不参与薪酬政策的制定,公司最后确定的薪酬政策就不会成功。另外,如果有更多的管理人员参与薪酬政策的制定,告诉公司他们认为重要的薪酬政策,公司最后确定的薪酬政策将更加有效。以上陈述如果为真,以下哪项陈述不可能有假?
最新回复
(
0
)