首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
admin
2019-08-11
45
问题
设α
1
=(1,3,5,—1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,—1,7)
T
.
①若α
1
,α
2
,α
3
线性相关,求a.
②当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
③设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
①α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. (α
1
,α
2
,α
3
)= [*] 得a=—3. ②与α
1
,α
2
,α
3
都正交的非零向量即齐次方程组 [*] 的非零解,解此方程组: [*] 解得α
4
=c(19,—6,0,1)
T
,c≠0. ③只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关, 从而α可以用α
1
,α
2
,α
3
,α
4
线性表示. 方法一 由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设(4=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
) =0. 得α
4
=0,与α
4
是非零向量矛盾. 方法二 计算行列式 | α
1
,α
2
,α
3
,α
4
| [*] 于是α
1
,α
2
,α
3
,α
4
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/6onRFFFM
0
考研数学三
相关试题推荐
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX2+b(X2+X3)2+c(X4+X5+X6)2+e(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
已知函数f(x,y,z)=x3y2z及方程x+y+z一3+e-3=e-(x+y+z).(*)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求;
计算下列函数指定的偏导数:设u=u(x,y)由方程u=φ(u)+∫yxP(t)dt确定,其中φ可微,P连续,且φ’(u)≠1,求P(x);
三人独立地同时破译一个密码,他们每人能够译出的概率分别为了.求此密码能被译出率P.
设A为三价非零矩阵,B=,且AB=0,则Ax=0的通解是___________.
已知方程组总有解,则λ应满足___________.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:Xi,Yi(i=1,2)的边缘概率密度;
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=一0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:P{Z=X}与P{Z=Y}.
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=一0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:a,b,c之值;
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
随机试题
男性,43岁,因急性脑出血入院,目前病人对任何刺激均无反应,呼吸不规则,大小便失禁,两侧瞳孔扩大,角膜反射消失,其意识状态是()。
下列关于肛裂的叙述,哪项是恰当的
低合金钢容器水压试验时水温应高于________。()
应急预案在应急救援中的重要作用体现在()。
教师要乐于从事教育事业,勤奋地进行工作,这体现了教师职业道德具有()原则。
根据以下资料,回答问题。2011年1~9月份,我国铁矿石原矿产量为()万吨。
大嘴鲈鱼只在有鲦鱼出现的河中长有浮藻的水域里生活。漠亚河中没有大嘴鲈鱼。从上述断定能得出以下哪项结论?Ⅰ.鲦鱼只在长有浮藻的河中才能发现。Ⅱ.漠亚河中既没有浮藻,又发现不了鲦鱼。Ⅲ.如果在漠亚河中发现了鲦鱼,则其中肯定不会
有人认为用电池驱动的电动车是解决未来空气污染问题的一个潜在方案,但他们却忽略了电池是要充电的,而目前我们的大多数电力都是通过燃烧有机燃料产生的,使用的电动车越多,就需要建越多的电厂,因为目前所有的电厂都在以最大的负荷运转。即使所有的汽车都被电动车替代,也不
Inthefollowingtext,somesentenceshavebeenremoved.ForQuestions41-45,choosethemostsuitableonefromthelist(A、B、C、
数据库系统的核心是______。
最新回复
(
0
)