首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型xTAx=+++2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中B= (Ⅰ)用正交变换化二次型xTAx为标准形,并写出所用正交变换; (Ⅱ)求(A-3E)6.
设二次型xTAx=+++2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中B= (Ⅰ)用正交变换化二次型xTAx为标准形,并写出所用正交变换; (Ⅱ)求(A-3E)6.
admin
2015-05-07
55
问题
设二次型x
T
Ax=
+
+
+2ax
1
x
2
+2bx
1
x
3
+2cx
2
x
3
,矩阵A满足AB=0,其中B=
(Ⅰ)用正交变换化二次型x
T
Ax为标准形,并写出所用正交变换;
(Ⅱ)求(A-3E)
6
.
选项
答案
(Ⅰ)由AB=[*]=0知,矩阵B的列向量是齐次方程组Ax=0的解向量. 记α
1
=[*],α
2
=[*],则Aα
1
=0=0α
1
,Aα
2
=0=0α
2
由此可知λ=0是矩阵A的特征值(至少是二重),α
1
,α
2
是λ=0的线性无关的特征向量. 根据∑λ
i
=∑a
ii
有0+0+λ
3
=1+4+1,故知矩阵A有特征值λ=6.因此,矩阵A的特征值是0,0,6. 设λ=6的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,那么由实对称矩阵不同特征值的特征向量相互 正交,有 [*] 解出α
3
=(1,2,-1)
T
对α
1
,α
2
正交化,令β
1
=(1,0,1)
T
,则 β
2
=α
2
-[*]=(2,-1,0)
T
-[*](1,0,1)
T
=(1,-1,-1)
T
再对β
1
,β
2
,α
3
单位化,得 γ
1
=[*](1,0,1)
T
,γ
2
=[*](1,-1,-1)
T
,γ
3
=[*](1,2,-1)
T
那么经坐标变换X=Qy,即 [*] 二次型化为标准形x
T
Ax=[*] (Ⅱ)因为A~[*],有A-3E~[*]-3E,进而(A-3E)
6
~([*]-3E)
6
.又[*]-3E=[*],所以由Q
-1
AQ=[*]得Q
-1
(A-3E)
6
Q=([*]-3E)
6
=3
6
E.于是(A-3E)
6
=Q([*]-3E)
6
Q
-1
=Q(3
6
E)Q
-1
=3
6
E.
解析
转载请注明原文地址:https://jikaoti.com/ti/6jcRFFFM
0
考研数学一
相关试题推荐
设,则(A*)-1=________.
设A为n阶可逆矩阵,则下列等式中,不一定成立的是().
若f(x1,x2,x3)=2x12+x22+x32+2x1x2-tx2x3是正定二次型,则t的取值范围是________.
求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=1=1的解.
已知函数u=u(x,y)满足方程=0.确定参数a,b,利用变换u(x,y)=v(x,y)eax+by将原方程变形,使新方程中不含有一阶偏导数项.
设ψ(x)是以2π为周期的连续函数,且φ(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
利用已知展开式把下列函数展开为x-2的幂级数,并确定收敛域.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求P{Y≤X}.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求Y的边缘密度函数;
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。当液面高度为π/4(m)时,求液面上升的速率
随机试题
强化理论是基于这样的假设:受到奖励的行为会重复进行,而招致惩罚后果的行为会更加趋向于重复发生。()
280nm波长附近具有最大光吸收峰的氨基酸是
患者男性,80岁,出现便血,伴贫血、腹痛、右下腹肿块1个月,无发热,伴明显消瘦,腹胀,应首先考虑诊断
下列导致工期延误的原因中,发包人可据以向承包人提起索赔的是()。
最小需要量法是1960年厄尔曼和达西提出的()的方法。
活动支架可分为()几种形式。
销售的500台计算机的销项税额为( )万元。当月的应纳增值税为( )万元。
(2014黑龙江)从装有4个红球、4个白球的袋中任取4个球,则所取的4个球中包括两种不同颜色的球的慨率是:
ATTENTIVE:METICULOUS::
Language-basedlearningdisabilitiesareproblemswithage-appropriatereading,spelling,and/orwriting.Thisdisorderisnot
最新回复
(
0
)