首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对于任意二事件A1,A2,考虑二随机变量 试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
对于任意二事件A1,A2,考虑二随机变量 试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
admin
2018-11-22
22
问题
对于任意二事件A
1
,A
2
,考虑二随机变量
试证明:随机变量X
1
和X
2
独立的充分必要条件是事件A
1
和A
2
相互独立.
选项
答案
记p
i
=P(A
i
)(i=1,2),p
12
=P(A
1
A
2
),而ρ是X
1
和X
2
的相关系数.易见,随机变量X
1
和X
2
都服从0~1分布,并且 P{X
i
=1}=P(A
i
),P{X
i
=0)=[*],P{X
1
=1,X
2
=1}=P(A
1
A
2
). (1)必要性.设随机变量X
1
和X
2
独立,则 P(A
1
A
2
)=P{X
1
=1,X
2
=1)=P{X
1
=1)P(X
2
=1}=P(A
1
)P(A
2
). 从而,事件A
1
和A
2
相互独立. (2)充分性.设事件A
1
和A
2
相互独立,则[*]也都独立,故 P{X
1
=0,X
2
=0}=[*]=P{X
1
=0)P{X
2
=0}, P{X
1
=0,X
2
=1}=P{X
1
=0}P{X
2
=1}, P{X
1
=1,X
2
=0}=[*]=P{X
1
=1}P{X
2
=0}, P{X
1
=1X
2
=1}=[*]=P(A
1
A
2
)=P(A
1
)P(A
2
)=P{X
2
=1}P{X
2
=1}. 从而,随机变量X
1
和X
2
相互独立.
解析
转载请注明原文地址:https://jikaoti.com/ti/6e1RFFFM
0
考研数学一
相关试题推荐
设A=,B是4×2的非零矩阵,且AB=O,则()
下列命题成立的是()
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
已知总体X服从参数为λ的泊松分布,X1,X2,…,Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为+(2-3a)S2是λ的无偏估计,则a=______。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
设函数f(x,y)在(2,一2)处可微,满足f(sin(xy)+2cosx,xy一2cosy)=1+x2+2y+o(x2+y2),这里o(x2+y2)表示比x2+y2为高阶无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点
微分方程y’’+2y’+y=shx的一个特解应具有形式(其中a,b为常数)()
设f(x)在(一∞,+∞)连续,在点x=0处可导,且f(0)=0,令(I)试求A的值,使F(x)在(一∞,+∞)上连续;(II)求F’(x)并讨论其连续性.
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
随机试题
深静脉血栓形成一般要测量双下肢的周径,大腿的测量点在髌骨上缘15cm,一般双侧相差多少才有临床意义
治疗肾虚型子肿的代表方剂是
依据《中华人民共和国防洪法》,下列说法正确的有()。
关于沉井不排水下沉水下封底技术要求的说法,正确的是()。
除证券交易所外,由证券商组织,按协议定价规则进行证券转让买卖的市场。在该市场的交易中,证券商可以撮合委托条件吻合的买卖双方成交,也可以自己作为交易的一方直接与委托者达成协议的市场是()。
战略伙伴关系
Defendersofspecialprotectivelaborlegislationforwomenoftenmaintainthateliminatingsuchlawswoulddestroythefruitso
某操作系统的当前资源分配状态如下表所示。假设当前系统可用资源R1、R2和R3的数量为(3,3,2),且该系统目前处于安全状态。那么下列哪些是安全序列?()
A、ifB、becauseC、sothatD、beforeC本文中此处表达的意思是:你得学会训练思维,这样,学习就成了一件乐事……。在四个选项中sothat引导结果从句,与上下文的意义相符。if,because,before都不正确。因此本题答案
EachdayofEarthWeek,forexample,hasbeengivenovertoaseparateenvironmentalissue.Theyare,【C1】______,energyefficien
最新回复
(
0
)