非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则( )

admin2017-01-13  36

问题 非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则(    )

选项 A、r=m时,方程组Ax=b有解。
B、r=n时,方程组Ax=b有唯一解。
C、m=n时,方程组Ax=b有唯一解。
D、r<n时,方程组有无穷多个解。

答案A

解析 对于选项A,r(A)=r=m。由于r(A;b)≥m=r,且    r(A;b)≤min{m,n+1}=min{r,n+1}=r,因此必有r(A;b)=r,从而r(A)=r(A;b),此时方程组有解,所以应选A。由B、C、D选项的条件均不能推得“两秩”相等。
转载请注明原文地址:https://jikaoti.com/ti/6GzRFFFM
0

最新回复(0)