设Q(x,y)在平面xOy上具有一阶连续的偏导数,且∫L2xydx+Q(x,y)dy与路径无关,且对任意的t有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,求Q(x,y).

admin2016-09-30  31

问题 设Q(x,y)在平面xOy上具有一阶连续的偏导数,且∫L2xydx+Q(x,y)dy与路径无关,且对任意的t有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,求Q(x,y).

选项

答案因为曲线积分与路径无关,所以[*]=2x,于是Q(x,y)=x2+φ(y). 由∫(0,0)(t,1)+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,得 t2+∫01φ(y)dy=t+∫0tφ(y)dy,两边对t求导数得1+φ(t)=2t,φ(t)=2t一1, 所以Q(x,y)=x2+2y一1.

解析
转载请注明原文地址:https://jikaoti.com/ti/6FPRFFFM
0

最新回复(0)