首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式 ①PA=B. ②P-1ABP=BA ③P-1AP=B. ④PTA2P=B2. 成立的个数是 ( )
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式 ①PA=B. ②P-1ABP=BA ③P-1AP=B. ④PTA2P=B2. 成立的个数是 ( )
admin
2014-04-23
45
问题
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式
①PA=B.
②P
-1
ABP=BA
③P
-1
AP=B.
④P
T
A
2
P=B
2
.
成立的个数是 ( )
选项
A、1
B、2
C、3
D、4
答案
C
解析
逐个分析关系式是否成立.①式成立.因为A,B均是n阶可逆矩阵,故存在可逆阵Q,Q,使QA=E,WB=E(可逆阵可通过初等行变换化为单位阵),故有QA=WB,W
-1
QA=B.记W
-1
Q=P,则有PA=B成立.故①式成立.②式成立.因为A,B均是n阶可逆矩阵,可取P=A,则有A
-1
(AB)A=(A
-1
A)BA=BA.故②式成立.③式不成立.
因为A.B均是n阶实对称矩阵,它们均可以相似于对角阵,但不一定相似于同一个对角阵,即A,B之间不一定相似.例如
(均满足题设的实对称可逆阵的要求),但对任意可逆阵P,均有P
-1
AP=P
-1
EP=E≠B.故③式不成立.④式成立.
因为A,B均是实对称可逆矩阵,其特征值均不为零,A
2
,B
2
的特征值均大于零.故A
2
,B
2
的正惯性指数为n(秩为n负惯性指数为0),故A
2
B存在可逆阵P,使得p
T
A
2
P=B
2
,故①式成立.
由上分析,故应选C.
【注】由本题可知,两个同阶可逆阵A,B必是等价的(由式①知),且其积AB,BA必是相似的(由式②知).但A,B不一定相似(由式③知),但两个实对称可逆阵A,B,其平方A
2
与B
2
一定是合同的(由式④知).
转载请注明原文地址:https://jikaoti.com/ti/6EcRFFFM
0
考研数学一
相关试题推荐
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
举例说明下列各命题是错误的:若有不全为0的数λ1,λ2,…,λm,使λ1a1+…+λmam+λ1b1+…+λmbm=0成立,则a1,a2,…,am线性相关,b1,b2,…,bm亦线性相关.
将化为直角坐标的累次积分为().
设,f(x)=x3-6x2+11x-5,则f(A)=________.
已知随机变量X的概率密度为f(x)=,求(1)常数a,b的值;(2)。
已知X与Y服从相同的分布,且P{|X|=|Y|}=0,X的概率分布为(1)求X与Y的联合概率分布;(2)问X与Y是否不相关?
求展为x-2的幂级数,并指出其收敛域.
求幂级数的收敛域.
设则
设随机变量X服从正态分布N(μ,σ2),则随着σ的增大,概率P{|X-μ|<σ}().
随机试题
简述管理学的学科特征。
下列哪项病症常引起中老年患者肾病综合征
A.心B.肺C.脾D.肝E.肾
下列不属于委托人权利的是( )。
合法代理行为的法律后果直接归属于()。
当代的机器人有一些严重的缺点,你认为下列几项中不成立的一项是()。
当x>0时,f(lnx)=,则xf’(x)dx为().
客户机/服务器(C/S)结构是一种基于【】的分布处理系统。
Theboardofthecompanyhasdecidedto______itsoperationtoincludeallaspectsoftheclothingbusiness.
SirMartinSorrell,thechiefexecutiveoftheadvertisingconglomerateWPP,wasatKensingtonWade,Britain’sfirstprimarysch
最新回复
(
0
)