首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=6的通解X=
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=6的通解X=
admin
2015-09-14
47
问题
设α
1
,α
2
,α
3
是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
,c表示任意常数,则线性方程组Ax=6的通解X=
选项
A、
B、
C、
D、
答案
C
解析
由于AX=b的通解等于AX=b的特解与AX=0的通解之和,故只要求出AX=0的基础解系,即得AX=b的通解。因为r(A)=3,故4元齐次方程组Ax=0的基础解系所含向量个数为4一r(A)=1,所以Ax=0的任一非零解就是它的基础解系。由于α
1
及
(α
2
+α
3
)都是Ax=b的解。故
是AX=0的一个解,从而ξ=(2,3,4,5)
T
也是AX=0的一个解,由上述分析知ξ是AX=0的一个基础解系,故Ax—b的通解为X=α
1
+ξ,因此(C)正确。
转载请注明原文地址:https://jikaoti.com/ti/63NRFFFM
0
考研数学三
相关试题推荐
2020年8月15日,“绿水青山就是金山银山”理念提出15周年理论研讨会在浙江安吉县召开,与会专家学者和有关负责人就“两山”理念的实践成果、时代意义等进行研讨,并对进一步实践提出建议。与会专家认为,浙江15年的实践证明,“绿水青山就是金山银山”理念符合客观
近百年来中国的发展变化早已证明,中国共产党的领导是历史的选择、是人民的选择。回首过去,中国共产党紧紧依靠人民,跨过一道又一道沟坎,取得一个又一个胜利,为中华民族作出了伟大历史贡献。中国共产党区别于其他任何政党的显著标志是
正确认识毛泽东思想的历史地位和指导意义,有一个怎样科学评价毛泽东和毛泽东思想的问题。这个问题的解决,关系到
马克思把社会比喻为一座大厦,并把社会关系区分为经济基础和上层建筑两部分。经济基础是
新时代我国经济发展的基本特征,是由高速增长阶段转向高质量发展阶段,正处在转变发展方式、优化经济结构、转换增长动力的攻关期。因此,当前和今后一个时期确定发展思路、制定经济政策、实施宏观调控的根本要求是
邓小平指出:“关于真理标准问题的争论,是个思想路线问题,是个政治问题,是个关系到党和国家前途和命运的问题。”关于真理标准问题的讨论的实质在于
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
随机试题
功能温肺化饮、化痰止咳的药是
定影液的成分有
月经后期是指月经周期推迟多少天以上()
我国《基金法》规定,基金托管人的更换条件有()。
某上市银行的一位董事涉及巨额贪污,可能对该银行的股票价格造成重大打压,银行业从业人员小张的做法不属于利用内幕消息进行交易的是()。
香港游客丢失港澳居民来往内地通行证,经过办理有关手续,由公安机关出入境管理部门签发一次性有效的()。
下列属于韩愈作品的是()。
五四运动后,()等地相继成立了共产主义小组。
There’sbeenalotoftalkaboutextraterrestrialbeingsvisitingourplanet.Idon’tputmuchstockinthat.Iamconvinced,ho
Bloodisvitaltomaintainingastablebodytemperature;inhumans,bodytemperaturenormallyfluctuateswithinadegreeof37.0
最新回复
(
0
)