首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由?
[2001年] 设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由?
admin
2019-06-25
47
问题
[2001年] 设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=[a
ij
]
n×n
中元素a
ij
的代数余子式.二次型
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由?
选项
答案
首先应注意,因合同变换不改变二次型的正惯性指数及负惯性指数,因而合同变换不改变二次型的规范形,即当两个二次型f(X)与g(X)的矩阵合同时,二次型f(X)与g(X)有相同的规范形.基于此,有下面三种方法证明f(X)与g(X)有相同的规范形. 解一 证f(X)与g(X)的矩阵合同.事实上,存在可逆矩阵A
-1
,使 (A
-1
)
T
AA
-1
=(A
-1
)
T
=(A
T
)
-1
=A
-1
. 于是g(X)=X
T
AX与f(X)=X
T
A
-1
X有相同的规范形. 解二 对二次型g(X)=X
T
AX作可逆的线性变换X=A
-1
Y,其中Y=[y
1
,y
2
,…,y
n
]
T
, 则g(X)=X
T
AX=(A
-1
Y)
T
AA
-1
Y=Y
T
(A
-1
)
T
AA
-1
y=Y
T
A
-1
Y.由此可知,A与A
-1
合同,则f(X)与g(X)必有相同的规范形. 解三 设A的全部特征值为λ
1
,λ
2
,…,λ
n
,则A
-1
的全部特征值为1/λ
1
,1/λ
2
,…,1/λ
n
.可见A与A
-1
的特征值中正与负的项数分别相同,因而二次型f(X)=X
T
A
-1
X与g(X)=X
T
AX的标准形中系数为正与负的项数分别相同,从而f(X)与g(X)有相同的正、负惯性指数,故它们有相同的规范形.
解析
转载请注明原文地址:https://jikaoti.com/ti/5xnRFFFM
0
考研数学三
相关试题推荐
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)一f(y)|≤|arctanx—arctany|,又f(1)=0,证明:
10件产品有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:第三次取得次品;
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.一次性抽取4个球;
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|且A,B都可相似对角化,证明:A~B.(2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1同成平面图形为D2.求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|___________.
求曲线的上凸区间.
设总体X的概率密度为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.
设二次型f(x1,x2,x3)=(a一1)x12+(a一1)x22+2x32+2x1x2(a>0)的秩为用正交变换法化二次型为标准形.
二阶微分方程y”=e2y满足条件y(0)=0,y’(0)=1的特解是y=_______.
随机试题
简述新民主主义统一战线的主要历史经验。
胃癌淋巴转移好发于( )
简述法定继承人的范围及继承顺序。[武大2015年研]
《行政区域界线管理条例》规定,经批准变更行政区域界线的,毗邻的各有关人民政府,应当按照()进行测绘,埋设桩界,签订协议书。
阅读下面古诗文,完成以下问题。【甲】山中与裴秀才迪书
三星堆位于()。
“哲学家们只是用不同的方式解释世界,而问题在于改变世界。”马克思的这句名言突出了马克思主义的特点是()
若有定义typedefint*T;Ta[10];则a的定义与下面哪个语句等价
软件设计中模块划分应遵循的准则是
DaydreamingI.DaydreamingcanbeharmfulbecauseitwasconsideredasA.awasteof【T1】________
最新回复
(
0
)