首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明向量组α,Aα,…,Ak—1α是线性无关的。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明向量组α,Aα,…,Ak—1α是线性无关的。
admin
2018-12-19
43
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k—1
α≠0。证明向量组α,Aα,…,A
k—1
α是线性无关的。
选项
答案
设有常数λ
0
,λ
1
,…,λ
k—1
使得 λ
0
α+λ
1
Aα+…+λ
k—1
A
k—1
α=0, 则有 A
k—1
(λ
0
α+λ
1
Aα+…+λ
k—1
A
k—1
α)=0, 从而得到λ
0
A
k—1
α=0。由题设A
k—1
α≠0,所以λ
0
=0。 类似地可以证明λ
1
=λ
2
=…=λ
k—1
=0,因此向量组α,Aα,…,A
k—1
α是线性无关的。
解析
转载请注明原文地址:https://jikaoti.com/ti/5LWRFFFM
0
考研数学二
相关试题推荐
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成(如图3—7).若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为103kg/m3)
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
(2015年)设A>0,D是由曲线段y=Asinχ(0≤χ≤)及直线y=0,χ=所围成的平面区域,V1,V2分别表示D绕χ轴与绕y轴旋转所成旋转体的体积.若V1=V2,求A的值.
(2005年)设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上的正值连续函数,a、b为常数,则
(1999年)微分方程y〞-4y=e2χ的通解为________.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设方阵A1与B1合同,A2与B2合同,证明:合同.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设二阶常系数线性微分方程,y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
求χ=2χ+y在区域D:χ2+≤1上的最大值与最小值.
随机试题
单纯性牙周炎局部治疗方法是
骨下袋系根据下列情况分类
A.甘草B.银杏C.烟草D.人参E.苦瓜
患者27岁,已婚,自述停经50d,少量阴道出血5d,2h前突然下腹剧痛,伴肛门坠胀感,晕厥1次,前来急诊。既往身体健康,月经正常。查:痛苦面容,脸色苍白,血压10.7/6.7kPa(80/50mmHg),脉搏110/min,下腹明显压痛,反跳痛。妇科检查
疲劳计算按(GB50017—2003)第3.1.6条规定,采用1台吊车标准值,求最大弯矩时可将1台吊车轮压合力与邻近一轮的中线与梁中心线重合,如下图所示,在D轮下可得最大弯矩:
依据《建筑基坑支护技术规程》JGJ120—2012,只适用于较浅基坑的支挡式结构为()。
资产管理委托终止的,期货公司应当按照合同约定办理的手续是()。
风险的定义实际上包括()两方面含义。
简要说明学前儿童词汇发展的主要表现。
It’sthethirdtimeforMiketobelate.Mikewenttobedatabouttenlastnight.
最新回复
(
0
)