设A是三阶实对称矩阵,且A2+2A=O,r(A)=2. (1)求A的全部特征值; (2)当k为何值时,A+kE为正定矩阵?

admin2017-12-31  41

问题 设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.
(1)求A的全部特征值;
(2)当k为何值时,A+kE为正定矩阵?

选项

答案(1)由A2+2A=O得r(A)+r(+2E)≤3,从而A的特征值为0或-2,因为A是实对称矩阵且r(A)=2,所以λ1=0,λ2=λ3=-2. (2)A+kE的特征值为k,k-2,k-2,当k>2时,A+kE为正定矩阵.

解析
转载请注明原文地址:https://jikaoti.com/ti/5IKRFFFM
0

随机试题
最新回复(0)