首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B= (Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换; (Ⅱ)判断矩阵A与B是否合同,并说明理由。
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B= (Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换; (Ⅱ)判断矩阵A与B是否合同,并说明理由。
admin
2020-01-15
21
问题
设二次型x
T
Ax=ax
1
2
+2x
2
2
-x
3
2
+8x
1
x
2
+2bx
1
x
3
+2cx
2
x
3
,实对称矩阵A满足AB=0,其中B=
(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换;
(Ⅱ)判断矩阵A与B是否合同,并说明理由。
选项
答案
(Ⅰ)二次型对应的实对称矩阵为A=[*],因为AB=0,所以 [*] 从而[*]解得[*] 下面求A的特征值 [*] A的特征值为0,6,-6。 当λ=0时,求解线性方程组(OE-A)x=0,解得a
1
=(1,0,1)
T
; 当λ=6时,求解线性方程组(6E-A)x=0,解得a
2
=(-1,-2,1)
T
; 当λ=-6时,求解线性方程组(-6E-A)x=0,解得a
3
=(-1,1,1)
T
。 下面将a
1
a
2
a
3
单位化 [*] 令 [*] 则二次型通过正交变换x=Qy化为标准型f=6y
2
2
-6y
3
2
,其中 [*] (Ⅱ)矩阵A与B不合同。因为r(A)=2,r(B)=1,由合同的必要条件可知矩阵A与B不合同。
解析
转载请注明原文地址:https://jikaoti.com/ti/5ICRFFFM
0
考研数学一
相关试题推荐
设随机变量X的期望与方差都存在,且E(X2)=0,则P{X=0}=____________.
下列反常积分发散的是()
设n为正整数,.(Ⅰ)证明对于给定的n,F(x)有且仅有一个零(实)点,并且是正的,记该零点为an;(Ⅱ)证明幂级数处条件收敛,并求该幂级数的收敛域.
设l为从点A(-π,0)沿曲线y=sinx至点B(π,0)的有向弧段,求
设A是n阶正定矩阵,X是n维列向量,E是n阶单位矩阵,记(Ⅰ)计算PW;(Ⅱ)写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
空间曲线,在xOy平面上的投影在x≥0处围成的区域记为D,则=___________.
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3·设α1,α2,α3的特征值依次为1,一1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ,求解线性方程组BX=β.
已知曲线在直角坐标系中由参数方程给出:x=t+e-t,y=2t+e-2t(t≥0).求y=y(x)的渐近线.
设α1,α2,…,αs都是实的n维列向量,规定n阶矩阵A=α1α1T+α2α2T+…+αsαsT.设r(α1,α2,…,αs)=k,求二次型XTAX的规范形.
商店出售10台洗衣机,其中恰有3台次品.现已售出一台洗衣机,在余下的洗衣机中任取两台发现均为正品,则原先售出的一台是次品的概率为
随机试题
婴儿能用拇指和示指取物的年龄为
A.含朱砂的药物与溴化物B.含鞣质的中药与枸橼酸铁C.含钙离子的药物与洋地黄D.黄药子与四环素E.四季青与红霉素容易产生协同作用、增强毒性的中西药不合理配伍是
放射工作条件在年有效剂量当量很少超过5mSv时,定为
下列哪项检查最有意义最有效的治疗是
甲向乙借款若干,双方签订了抵押合同,即甲以其正在修建的一艘船作为抵押,但没有到相关部门登记。在此期间,乙欲将此船转让给丙。对此,下列表述正确的是()
关于一般预防和特殊预防的关系,下列哪一选项是错误的?()
-1
Itistheurbandriver’smostagonizingeverydayexperience:thesearchforanemptyparkingplace.Circling,narrowlymissinga
Whatisthemainpurposeofthelecture?Accordingtotheprofessor,whywastheEiffelTowerbuilt?Choose2answers.
Hedemandedthatweexplainwhythingswentwrong,______?
最新回复
(
0
)