首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2019-11-25
58
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0, 所以r(A
*
)=1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而 A
*
A=0,所以A的列向量组a
1
,a
2
,…,a
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得a
2
,…,a
n
线性无关,所以a
2
,…,a
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由a
2
,…,a
n
线性表示,也可由a
1
,a
2
,…,a
n
线性表示, 故r(A)=r([*])=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://jikaoti.com/ti/5HiRFFFM
0
考研数学三
相关试题推荐
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
求曲线的一条切线l,使该曲线与切线l及直线x=0,x=2所围成图形的面积最小.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A是n阶可逆方阵(n≥2),A*是A的伴随矩阵,则(A*)*=()
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:(1)使用的最初150小时内,至少有两个电子管被烧坏的概率;(2)在使用的最初150小时内烧坏的电子管数Y的分布律;(3)Y的分布函数.
设A是m×n阶矩阵,试证明:(Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。(Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
n维向量α=(1/2,0,…0,1/2)T,A=E-4ααT,β=(1,1,…1)T,则Aβ的长度为()。
设函数f(χ)连续,且f(0)≠0,求极限=_______.
设f(x)=f(x-π)+sinx,且当x∈[0,π]时,f(x)=x,求∫π3πf(x)dx.
随机试题
毛泽东第一次公开使用“人民民主专政”概念的文章是
由创伤牙合造成的隐裂在治疗时应首先
货币的交易需求可由()函数关系表达。
2011年4月,甲公司因欠乙公司货款100万元不能按时偿还,向乙公司请求延期至2012年4月1日还款,并愿意以本公司所有的3台大型设备进行抵押和1辆轿车进行质押,为其履行还款义务提供担保。乙公司同意了甲公司的请求,并与甲公司订立了书面抵押和质押合同。甲公司
合同文本复核人员应就复核中发现的问题及时与合同填写人员沟通,并建立复核记录,交由()签字确认。
案例:某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:①掌握勾股定理的内容,体会数形结合思想;②学会运用勾股定理。为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
邓小平指出:“改革是中国的第二次革命。”这一论断是指改革与第一次革命具有相同的内容。()
软件开发中的瀑布模型典型地刻画了软件生存周期的阶段划分,与其最相适应的软件开发方法是(1)。
IP地址块211.64.0.0/11的子网掩码可写为()。
在关系模型中,每个关系模式中的关键字()。
最新回复
(
0
)