首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程的通解,并确定参数a,b,c.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程的通解,并确定参数a,b,c.
admin
2019-01-23
36
问题
已知η
1
=[-3,2,0]
T
,η
2
=[-1,0,-2]
T
是线性方程组
的两个解向量,试求方程的通解,并确定参数a,b,c.
选项
答案
对应齐次方程组有解 ξ=η
1
-η
2
=[-2,2,2]
T
=2[-1,1,1]
T
, 故对应齐次方程组至少有一个非零向量组成基础解系, 故 [*] 又显然应有r(A)=r(A|b)≥2. 从而r(A)=r(A|b)=2,故方程组有通解 k[-1,1,1]
T
+[-3,2,0]
T
. 将η
1
,η
2
代入第一个方程,得 -3a+2b=2, -a-2c=2, 解得a=-2—2c,b=-2—3c,c任意常数, 可以验证:当a=-2—2c,b=-2—3c,c任意时,r(A)=r(A|b)=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/4V1RFFFM
0
考研数学一
相关试题推荐
设anxn满足,又bnx2n满足,则的收敛半径R=______.
设二维随机变量(X,Y)在区域D={(X,Y)|0≤y≤1,Y≤x≤Y+l}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
设随机变量X服从参数为λ的指数分布,G(z)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
求[φ(x)-1]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
设当x>0时,方程kx+=1有且仅有一个解,求k的取值范围.
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:(I)对于(一1,1)内的任意x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf[θ(x)x]成立;
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
随机试题
民族意识的觉醒。
组织设计的原则包括( )
肿瘤完全位于脑干时,下列哪个症状少见
根据病史及体格检查,最可能的疾病是如为Ⅱ度内痔核,应采用下列哪项治疗方法较合适
是澳门区地理坐标的标志点,澳门第一高峰的是()
小吴到剧院去看喜剧表演,当一喜剧演员表演时,他笑得前仰后合。据了解,小吴几乎未曾为这个演员的表演而笑过,也不对其他的演员笑,在场的观众也没有人笑,那么,根据凯利(H.Kelly)的三维归因理论,小吴最有可能是因为下列哪种因素而笑的?()
Beingagoodparentis,ofcourse,whateveryparentwouldliketobe.Butdefiningwhatitmeanstobeagoodparentisundoubt
寄生在编译处理程序或链接程序中的病毒称为(68)。
在满足实体完整性约束的条件下( )。
ThreeEnglishdictionariespublishedrecentlyalllayclaimtopossessinga"new"feature.TheBBCEnglishDictionarycontainsb
最新回复
(
0
)