设f(x)是(—∞,+∞)上的连续奇函数,且满足|f(x)|≤M,其中常数M>0,则函数F(x)=∫0xte—t2f(t)dt是(—∞,+∞)上的

admin2019-01-29  37

问题 设f(x)是(—∞,+∞)上的连续奇函数,且满足|f(x)|≤M,其中常数M>0,则函数F(x)=∫0xte—t2f(t)dt是(—∞,+∞)上的

选项 A、有界奇函数
B、有界偶函数
C、无界偶函数
D、无界奇函数

答案A

解析 首先,由于被积函数te—t2f(t)是(—∞,+∞)上的偶函数,故F(x)是(—∞,+∞)上的奇函数.其次,对任何x≥0,有

利用F(x)的对称性,当x≤0时上面的不等式也成立.从而,函数F(x)还是(—∞,+oo)上的有界函数.故应选A.
转载请注明原文地址:https://jikaoti.com/ti/4PWRFFFM
0

随机试题
最新回复(0)