首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是满足AB=O的任意两个非零阵,则必有( ).
设A,B是满足AB=O的任意两个非零阵,则必有( ).
admin
2022-04-02
27
问题
设A,B是满足AB=O的任意两个非零阵,则必有( ).
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
设A,B分别为m×n及n×s矩阵,因为AB=0,所以r(A)+r(B)≤n,因为A,B为非零矩阵,所以r(A)≥1,r(B)≥1,从而r(A)<n,r(B)<n,故A的列向量组线性相关,B的行向量组线性相关,选(A).
转载请注明原文地址:https://jikaoti.com/ti/48fRFFFM
0
考研数学三
相关试题推荐
设向量组(I)α1,α2,…,αn,其秩为r1,向量组(Ⅱ)β1,β2,…,βn,其秩为r2,且βi(i=l,2,…,s)均可以由α1,…α1线性表示,则().
设y=y(x)是由方程x2+y=tan(x—y)所确定且满足y(0)=0,则y"(0)=__________.
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
某企业生产某种商品的成本函数为C=a+bQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为销售量,求:(I)当每件商品的征税额为t时,该企业获得最大利润时的销售量;(Ⅱ)当企业利润最大时,t为何值时征税收益最大.
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放人乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
随机试题
冷疗法
人力资源需求预测为了发现一些人才流动中的隐藏问题,某机构曾用一个月的时间观察某个人才交流中心,如同上班,几乎天天按时“报到”。不久,他们注意到一个面无表情的经理,他每周有固定的两天出现在固定的招聘展位上,并总是挂出相同的招聘广告。原来,这位招聘者是
为明确诊断,下一步首选的检查是最可能的诊断是
血管性痴呆中最常见的是
男,64岁,患慢支15年。近来出现逐渐加重的呼吸困难,其原因是
依据《危险化学品安全管理条例》的规定,除运输工具加油站、加气站外,危险化学品的生产装置和储存数量构成重大危险源的储存设施应当与()保持符合有关标准或者有关规定的安全距离。
某零部件生产企业为增值税一般纳税人,每件产品的不含税售价为1000元,每件产品的成本为800元;购进原材料均能取得增值税专用发票,购销货物适用增值税税率均为17%(城市维护建设税及教育费附加暂不考虑)。2012年8月,税务机关对该企业2011年度的纳税情况
对行政管理中出现的失误,不仅要追究行政管理当事人责任,而且还要追究相关领导人责任的一种制度是()。
长江:青海
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.
最新回复
(
0
)