首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当x∈[-1,1]时,f(x)连续,F(x)=∫-11|x-t|f(t)dt,x∈[-1,1]. 若f(x)>0(-1≤x≤1),证明曲线y=F(x)在区间[-1,1]上是凹的.
设当x∈[-1,1]时,f(x)连续,F(x)=∫-11|x-t|f(t)dt,x∈[-1,1]. 若f(x)>0(-1≤x≤1),证明曲线y=F(x)在区间[-1,1]上是凹的.
admin
2018-07-23
47
问题
设当x∈[-1,1]时,f(x)连续,F(x)=∫
-1
1
|x-t|f(t)dt,x∈[-1,1].
若f(x)>0(-1≤x≤1),证明曲线y=F(x)在区间[-1,1]上是凹的.
选项
答案
F(x)=∫
-1
x
(x-t)f(t)dt+∫
x
1
( t-x)f(t)dt =x∫
-1
x
f(t)dt-∫
-1
x
tf(t)dt+∫
x
1
tf(t)dt-x∫
x
1
f(t)dt Fˊ(x)=∫
-1
x
f(t)dt+xf(x)-xf(x)-xf(x)-∫
x
1
f(t)dt+xf(x) =∫
-1
x
f(t)dt-∫
x
1
f(t)dt, F″(x)=f(x)+f(x)=2f(x)>0. 所以曲线y=F(x)在区间[-1,1]上是凹的.
解析
转载请注明原文地址:https://jikaoti.com/ti/3ZWRFFFM
0
考研数学二
相关试题推荐
[*]
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
已知,当x→∞时,p,q取何值时f(x)为无穷小量?p,q取何值时f(x)为无穷大量?
设u=f(x,y,z),ψ(x2,ey,z)=0,y=sinx,其中f,ψ都具有一阶连续偏导数,且.
设ψ(x)是以2π为周期的连续函数,且φ’(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进入大气层开始燃烧的前3s内,减少了体积的,问
设则2f’x(0,0)+f’y(0,0)=_______.
当0≤θ≤π时,对数螺旋r=eθ的弧长为______。
随机试题
产品的装配顺序,基本上是由产品的结构和装配组织形式决定。()
同工酶的正确叙述是
A.IL-2B.IL-4C.IL-10D.IFN-γE.IL-1Th1源细胞因子,同时也是巨噬细胞活化因子
A.病程超过2周B.病程超过1个月C.病程超过2个月D.病程超过半年E.病程超过1年慢性肝炎()
Z市F区人民法院开庭审理郭某盗窃案,在调查证据时,宣读了因病不能出庭作证的赵某的证言笔录。依照《刑事诉讼法》的规定,对于该证言笔录,审判人员应当听取部分诉讼参与人的意见不包括下列哪些人?()
现浇钢筋混凝土楼梯的工程量应按设计图示尺寸()。【2004年真题】
用于包装、铺垫、支撑、承载货物的木箱、木框、木楔、胶合板等都属于检验检疫中木质包装的范畴。( )
风险限额管理过程主要包括()。①风险限额的设定②风险限额的监测③风险限额的调整④风险限额的控制
()是保证组织目标实现的重要手段。
A公司通过其在中国的30家店铺销售多种高质量的运动服和运动鞋。在国家经济不断增长的情况下,该公司目前是盈利的,但这几年的利润空间一直在减少,公司尚未对此查明原因。每家店铺均采用电子系统记录库存。所有商品都由各店铺提供详细的产品要求,然后由驻孟加拉国的总部集
最新回复
(
0
)